[1]马旭东,钟 焱,陈雅丽.2019.华北克拉通孔兹岩带内孔兹岩系沉积过程对石墨矿床成矿的控制.大地构造与成矿学,43(6):1155-1168.doi:10.16539/j.ddgzyckx.2019.02.015
 MA Xudong,ZHONG Yan,CHEN Yali and QU Xiaoming.2019.Sedimentary Process Controls on the Graphite Mineralized in the Khondalite Series, Western North China Craton.Geotectonica et Metallogenia,43(6):1155-1168.doi:10.16539/j.ddgzyckx.2019.02.015
点击复制

华北克拉通孔兹岩带内孔兹岩系沉积过程对石墨矿床成矿的控制
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2019年43卷06期
页码:
1155-1168
栏目:
构造地质与成矿学
出版日期:
2019-12-15

文章信息/Info

Title:
Sedimentary Process Controls on the Graphite Mineralized in the Khondalite Series, Western North China Craton
文章编号:
1001-1552(2019)06-1155-014
作者:
马旭东1 钟 焱2 陈雅丽3 曲晓明1
1.中国地质科学院矿产资源研究所, 自然资源部成矿作用与资源评价重点实验室, 北京 100037; 2.中国 地质调查局天津地质调查中心, 天津 300170; 3.农业部环境保护科研监测所, 天津 300191
Author(s):
MA Xudong1 ZHONG Yan2 CHEN Yali3 and QU Xiaoming1
1. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 2. Tianjin Center, China Geological Survey, Tianjin 300170, China; 3. Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China
关键词:
石墨矿床 物质来源 孔兹岩系 华北克拉通
Keywords:
graphite deposit source of graphite khondalite series North China Craton
分类号:
P587; P536; P612
DOI:
10.16539/j.ddgzyckx.2019.02.015
文献标志码:
A
摘要:
石墨因其特殊的物理化学性质广泛应用于现代工业, 市场对石墨特别是高品质的晶质石墨需求日趋增大。华北克拉通作为晶质石墨的主要产区, 大部分矿床产于早前寒武纪孔兹岩系中。通过总结华北克拉通西部孔兹岩系中石墨的碳同位素特征, 确定石墨中的碳主要来源于前期沉积物中的有机质, 仅混合少量麻粒岩相去气过程中产生的无机碳, 因此有机质的沉积量成为控制石墨矿储量的最主要因素。在此认识基础上, 本文总结了华北克拉通西部孔兹岩系的地质特征、岩石组合、含矿性、构造变形及年代学特征, 进而探讨华北克拉通西部孔兹岩系沉积过程对石墨矿床成矿的控制, 认为孔兹岩系的沉积环境为活动陆缘的弧后盆地, 沉积序列底部最有利于有机质的沉淀。结合该带内地质情况, 确定 华北克拉通西部具有寻找大型石墨矿的巨大空间。
Abstract:
Due to its special physical and chemical properties, graphite is widely used in modern industry, which results in the booming demands of flake crystalline graphite. The North China Craton (NCC) is the biggest production area for crystalline graphite in China, and most of the graphite deposits occur in the Precambrian khondalite series. Our compilation of carbon isotopic compositions of graphite from the khondalite series in the western NCC demonstrated that the organic matter deposited during the sedimentation is the major source of ore-forming materials for the graphite ore deposits. Moreover, we reviewed the geological characteristics, ore-bearing potential, tectonic deformation and geochronology of the khondalite series in the western NCC, and inferred that these khondalites were deposited in a back-arc basin along an active continental margin. A tentative lithofacies paleogeographic investigation of the khondalite series suggests that the bottom sequence is favorable for the formation of graphite, and geological observations showed that the western NCC has huge exploring and prospecting potential of graphite ores.

参考文献/References:

陈衍景, 刘丛强, 陈华勇, 张增杰, 李超. 2000. 中国北方石墨矿床及赋矿孔达岩系碳同位素特征及有关问题讨论.岩石学报, 16(2): 233-244.
金巍, 李树勋, 刘喜山. 1991. 内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学. 岩石学报, 7(4): 27-35.
李超, 王登红, 赵鸿, 裴浩翔, 李欣尉, 周利敏, 杜安道, 屈文俊. 2015. 中国石墨矿床成矿规律概要. 矿床地质, 34(6): 1223-1236.
刘福来, 刘平华, 王舫, 刘超辉, 蔡佳. 2015. 胶-辽-吉 古元古代造山/活动带巨量变沉积岩系的研究进展. 岩石学报, 31(10): 2816-2846.
刘金中, 钱祥麟, 陈亚平. 1989. 中国内蒙中部孔兹岩系中石墨矿的构造成因. 大地构造与成矿学, 13(2): 162-167.
卢良兆. 1996. 中国北方早前寒武纪孔兹岩系. 长春: 长春出版社.
卢良兆, 靳是琴, 徐学纯, 刘福来. 1992. 内蒙古东南部早前寒武纪孔兹岩系成因及其含矿性. 长春: 吉林科学技术出版社: 4-121.
王家昌, 张家英, 朱艳. 2013. 我国石墨成矿特征及找矿标志. 中国非金属矿工业导刊, 3: 49-51.
徐仲元, 刘正宏, 胡凤翔, 杨振升. 2005. 内蒙古大青山地区孔兹岩系中钙硅酸盐的组成和地球化学特征. 吉林大学学报(地球科学版), 35(6): 681-689.
徐仲元, 刘正宏, 杨振升, 吴新伟, 陈晓峰. 2007. 内蒙古中部大青山-乌拉山地区孔兹岩系的变质地层结构及动力学意义. 地质通报, 26(5): 526-536.
徐仲元, 刘正宏, 杨振升. 2002. 内蒙古大青山地区孔兹岩系的地层结构. 吉林大学学报(地球科学版), 32(4): 313-318.
张华锋, 罗志波, 王浩铮. 2013. 内蒙凉城2.0 Ga变质花岗岩对超高温变质作用的制约. 岩石学报, 29(7): 2391-2404.
赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792.
钟焱, 陈雅丽, 翟明国, 马旭东. 2016. 华北克拉通西部古元古代孔兹岩系的地层对比、岩相古地理特征及其地质意义. 岩石学报, 32(3): 713-726.
钟长汀, 邓晋福, 万渝生, 毛德宝, 李惠民. 2007. 华北克拉通北缘中段古元古代造山作用的岩浆记录: S型花岗岩地球化学特征及锆石SHRIMP年龄. 地球化学, 36(6): 633-637.
周喜文, 耿元生. 2009. 贺兰山孔兹岩系的变质时代及其对华北克拉通西部陆块演化的制约. 岩石学报, 25(8): 1843-1852.
周喜文, 赵国春, 耿元生. 2010. 贺兰山高压泥质麻粒岩-华北克拉通西部陆块拼合的岩石学证据. 岩石学报, 26(7): 2113-2121.
Bolhar R, Weaver S D, Whitehouse M J, Palin J M, Woodhead J D and Cole J W. 2008. Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand). Earth and Planetary Sciences Letters, 268: 312-324.
Bouilhol P, Schaltegger U, Chiaradia M, Ovtcharova M, Stracke A, Burg J P and Dawood H. 2011. Timing of juvenile arc crust formation and evolution in the Sap at Complex (Kohistan-Pakistan). Chemical Geology, 280: 243-256.
Condie K C, Boryta M D, Liu J and Qian X. 1992. The origin of khondalites: Geochemical evidence from the Archean to early Proterozoic granulite belt in the North China craton. Precambrian Research, 59: 207-223.
Dan W, Li X H, Guo J H, Liu Y and Wang X C. 2012. Integrated in situ zircon U-Pb age and Hf-O isotopes for the Helanshan khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin? Precambrian Research, 222-223: 143-158.
Dan W, Li X H, Wang Q, Wang X C, Liu Y and Wyman D A. 2014. Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sediment recycling during slab break-off. Precambrian Research, 254: 59-72.
Dissanayake C B. 1994. Origin of vein graphite in high-grade metamorphic terrains. Mineralium Deposita, 29(1): 57-67.
Dissanayake C B, Chandrajith R and Boudou J P. 2000. Biogenic graphite as a potential geomarker-application to continental reconstructions of Pan-African Gondwana terrains. Gondwana Research, 3: 405-413
Dong C Y, Wan Y S, Wilde S A, Xu Z Y, Ma M Z, Xie H Q and Liu D Y. 2014. Earliest Paleoproterozoic supracrustal rocks in the North China Craton recognized from the Daqingshan area of the Khondalite Belt: Constraints on craton evolution. Gondwana Research, 25(4): 1535- 1553.
Dong C Y, Wan Y S, Xu Z Y, Liu D Y, Yang Z S, Ma M Z and Xie H Q. 2013. SHRIMP zircon U-Pb dating of Late Paleoproterozoic kondalites in the Daqing Mountains area on the North China Craton. Science China: Earth Sciences, 56(1): 115-125.
Gou L L, Zhang C L, Brown M, Piccoli P M, Lin H B and Wei X S. 2016. P-T-t evolution of pelitic gneiss from the basement underlying the Northwestern Ordos Basin, North China Craton, and the tectonic implications. Precambrian Research, 276: 67-84.
Grew E S. 1974. Carbonaceous material in some metamorphic rocks of New England and other areas. Journal of Geology, 92: 50-73.
Guo J H, Peng P, Chen Y, Jiao S J and Windley B F. 2012. UHT sapphirine granulite metamorphism at 1.93-1.92 Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 222-223: 124- 142.
He X F, Santosh M, Bockmann K, Kelsey D E, Hand M, Hu J and Wan Y. 2016. Petrology, phase equilibria and monazite geochronology of granulite-facies metapelites from deep drill cores in the Ordos Block of the North China Craton. Lithos, 262: 44-57.
Hoefs J. 1973. Stable Isotope Geochemistry. Springer-Verlag, Berlin/Heidelberg/New York: 140.
Jiao S J, Guo J H, Harley S L and Windley B F. 2013. New constraints from garnetite on the P-T path of the Khondalite Belt: Implications for the tectonic evolution of the North China Craton. Journal of Petrology, 54: 1725-1758.
Jiao S J, Guo J H, Wang L J and Peng P. 2015. Short-lived high-temperature prograde and retrograde metamorphism in Shaerqin sapphirine-bearing metapelites from the Daqingshan terrane, North China Craton. Precambrian Research, 269: 31-57.
Katz M B. 1987. Graphite deposits from Sri Lanka: A consequence of granulite facies metamorphism. Mineralium Deposita, 22: 18-25.
Kusky T M. 2011. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Research, 20: 26-35.
Kusky T M and Li J H. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22: 383-397.
Landis C A. 1971. Graphitization of dispersed carbonaceous matter in metamorphic rocks. Contributions to Mineralogy and Petrology, 30: 34-45.
Liu D Y, Nutman A P, Compston W, Wu J S and Shen Q H. 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20: 339-342.
Liu F L, Liu P H and Cai J. 2016. Genetic mechanism and metamorphic evolution of khondalite series within the Paleoproterozoic mobile belts, North China Craton // Main Tectonic Events and Metallogeny of the North China Craton. Singapore: Springer: 181-228.
Liu X S, Jin W, Li S X and Xu X C. 1993. Two types of Precambrian high-grade metamorphism, Inner Mongolia, China. Journal of Metamorphic Geology, 11(4): 499- 510.
Lu L Z and Jin S Q. 1993. P-T-t paths and tectonic history of an Early Precambrian granulite facies terrane, Jining district, south-east Inner Mongolia, China. Journal of Metamorphic Geology, 11(4): 483-498.
Luque F J, Crespo-Feo E, Barrenechea J F and Ortega L. 2012. Carbon isotopes of graphite: Implications on fluid history. Geoscience Frontiers, 3: 197-207.
Ma M Z, Wan Y S, Santosh M, Xu Z Y, Xie H Q, Dong C Y, Liu D Y and Guo C L. 2012. Decoding multiple tectonothermal events in zircons from single rock samples: SHRIMP zircon U-Pb data from the Late Neoarchean rocks of Daqingshan, North China Craton. Gondwana Research, 22(3-4): 810-827.
Peng P, Guo J H, Windley B F and Li X H. 2011. Halaqin volcano-sedimentary succession in the central-northern margin of the North China Craton: Products of Late Paleoproterozoic ridge subduction. Precambrian Research, 187: 165-180.
Peng P, Guo J H, Zhai M G and Bleeker W. 2010. Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China Craton: Evidence of crust-mantle interaction. Precambrian Research, 183: 635-659.
Radhika U P and Santosh M. 1996. Shear-zone hosted graphite in southern Kerala, India: Implications for CO2 infiltration. Journal of Southeast Asian Earth Sciences, 14: 265-273.
Radhika U P, Santosh M and Wada H. 1995. Graphite occurrences in southern Kerala: Characteristics and genesis. Journal of the Geological Society of India, 45: 653-666.
Santosh M, Sajeev K, Li J H, Liu S J and Itaya T. 2009. Counterclockwise exhumation of a hot orogen: The Paleoproterozoic ultrahigh-temperature granulites in the North China Craton. Lithos, 110: 140-152.
Santosh M, Tsunogae T, Li J H and Liu S J. 2007. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton: Implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Research, 11: 263-285.
Santosh M and Wada H. 1992. Fluid processes in the Earth’s lower crust: Evidence from microscale isotopic zonation in graphite crystals. Current Science, 63: 320-325.
Santosh M and Wada H. 1993a. A carbon isotope study of graphites from the Kerala Khondalite belt, southern India: Evidence for CO2 infiltration in granulites. Journal of Geology, 101: 643-650.
Santosh M and Wada H. 1993b. Microscale isotopic zonation in graphite crystals: Evidence for channeled CO2 influx in granulite. Earth and Planetary Science Letters, 119: 19-26.
Santosh M, Wada H, Satish-Kumar M and Binu Lal S S. 2003. Carbon isotope “stratigraphy” in a single graphite crystal: Implications for the crystal growthmechanism of fluid-deposited graphite. American Mineralogist, 88: 1689-1696.
Schidlowski M. 1987. Application of stable carbon isotopes to early biochemical evolution on Earth. Annual Review of Earth and Planetary Sciences, 15(1): 47-72.
Silva K K M W. 1987. Mineralization and wall-rock alteration at the Bogala graphite deposit, Bulathkohupitiya, Sri Lanka. Economic Geology, 82: 1710-1722.
U.S. Geological Survey. 2016. Mineral commodity summaries 2016: U.S. Geological Survey: 202. http: // dx.doi.org/ 10.3133/70140094
Upadhyay D. 2008. Alkaline magmatism along the Southeastern margin of the Indian shield: Implications for regional geodynamics and constraints on craton- Eastern Ghats Belt suturing. Precambrian Research, 162: 59-69.
Upadhyay D, Gerdes A and Raith M M. 2009. Unraveling sedimentary provenance and tectonothermal history of high-temperature metapelites, using zircon and monazite chemistry: A case study from the Eastern Ghats Belt, Indian. Journal of Geology, 117: 665-683.
Upadhyay D, Raith M M, Mezger K, Bhattacharya A and Kinny P D. 2006. Mesoproterozoic rifting and Pan-African continental collision in SE India: Evidence from the Khariar alkaline complex. Contributions to Mineralogy and Petrology, 151: 434-456.
Walter M J, Kohn S C, Araujo D, Bulanova G P, Smith C B, Gaillou E, Wang J, Steele A and Shirey S B. 2011. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science, 334: 54-57.
Wan Y S, Liu D Y, Dong C U, Xu Z Y, Wang Z, Wilde S A , Yang Y, Liu Z and Zhou H. 2009. The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: Evidence for multiple metamorphic events in the Palaeoproterozoic era. Geological Society, London, Special Publications, 323: 73-97.
Wan Y S, Song B, Liu D Y, Wilde S A, Wu J, Shi Y, Yin X and Zhou H. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149: 249-271.
Wan Y S, Xie H Q, Yang H, Wang Z J, Liu D Y, Kroner A, Wilde S A, Geng Y S, Sun L Y, Ma M Z, Liu S J, Dong C Y and Du L L. 2013b. Is the Ordos Block Archean or Paleoproterozoic in age? Implications for the Precambrian evolution of the North China Craton. American Journal of Science, 313: 683-711.
Wan Y S, Xu Z Y, Dong C Y, Nutman A, Ma M Z, Xie H Q, Liu D Y, Wang H C and Cu H. 2013a. Episodic Paleoproterozoic (~2.45, ~1.95 and ~1.85 Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton: SHRIMP zircon U-Pb dating and whole-rock geochemistry. Precambrian Research, 224: 71-93.
Weis L, Friedman I and Gleason J. 1981. The origin of epigenetic graphite: Evidence from isotopes. Geochemica et Cosmochimica Acta, 45: 2325-2332.
Wu F Y, Ji W Q, Liu C Z and Chung S L. 2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 271: 13-25.
Xia X P, Sun M, Zhao G C and Luo Y. 2006a. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Research, 144: 199-212.
Xia X P, Sun M, Zhao G C, Wu F Y, Xu P, Zhang J H and Luo Y. 2006b. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, western Block of the North China Craton. Earth and Planetary Science Letters, 241: 581-593.
Yang Q Y, Santosh M and Wada H. 2014. Graphite mineralization in Paleoproterozoic khondalites of the North China Craton: A carbon isotope study. Precam?brian Research, 255: 641-652.
Yin C Q, Zhao G C, Guo J H, Sun M, Xia X P, Zhou X W and Liu C H. 2011. U-Pb and Hf isotopic study of zircons of the Helanshan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 122(1-2): 25-38.
Yin C Q, Zhao G C, Sun M, Xia X P, Wei C J, Zhou X W and Leung W H. 2009. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: Constrains on the evolution of the Khondalite Belt in the western block of the North China Craton. Precambrian Research, 174(1-2): 78-94.
Yin C Q, Zhao G C, Wei C J, Sun M, Guo J H and Zhou X W. 2014. Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan Complex: Constraints on the tectonic evolution of the Khondalite Belt in the North China Craton. Precambrian Research, 242: 172- 186.
Young G M. 2013. Precambrian continents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history. Geoscience Frontiers, 4: 247-261.
Zhai M G, Guo J H and Liu W J. 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: A review. Journal of Asian Earth Sciences, 24: 547-561.
Zhai M G and Liu W J. 2003. Palaeoproterozoic tectonic history of the North China craton: A review. Precambrian Research, 122: 183-199.
Zhai M G and Santosh M. 2011. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20: 6-25.
Zhang H F, Zhai M G, Santosh M, Wang H Z, Zhao L and Ni Z Y. 2014. Paleoproterozoic granulites from the Xinghe graphite mine, North China Craton: Geology, zircon U-Pb geochronology and implications for the timing of deformation, mineralization and metamorphism. Ore Geology Reviews, 63: 478-497.
Zhao G C. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion. Acta Petrologica Sinica, 25: 1772-1792.
Zhao G C, Cawood P A, Li S Z, Wilde S A, Sun M, Zhang J, He Y H and Yin C Q. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 55-76.
Zhao G C, Sun M, Wilde S A and Li S Z. 2003. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia supercontinent: Records in the North China Craton. Gondwana Research, 6: 417-434.
Zhao G C, Sun M, Wilde S A and Li S Z. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136: 177-202.
Zhao G C, Wilde S A, Cawood P A and Li S Z. 1998. Thermal evolution of the Archaean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. International Geology Review, 40: 706-721.
Zhao G C, Wilde S A, Cawood P A and Lu L Z. 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310: 37-53.
Zhao G C, Wilde S A, Cawood P A and Lu L Z. 2001. Archean blocks and their boundaries in the North China Craton lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73.
Zhao G C, Wilde S A and Zhang J. 2010. New evidence from seismic imaging for subduction during assembly of the North China Craton: Comment. Geology, 38(4): 206.
Zhao G C and Zhai M G. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research, 23(4): 1207-1240.

相似文献/References:

[1]龙淑贞.“构造与金成矿规律研究”成果在津通过验收鉴定.大地构造与成矿学,1993.17(2):038.
[2]曾广乾,何良伦,张德明.黔西罐子窑铅锌矿床Pb同位素研究及地质意义.大地构造与成矿学,2017.41(2):305.doi:10.16539/j.ddgzyckx.2017.02.007
 ZENG Guangqian,HE Lianglun,ZHANG Deming.Pb Isotopic Composition of Guanziyao Lead-Zinc Ore Deposits in West Guizhou and its Geological Implications.Geotectonica et Metallogenia,2017.43(6):305.doi:10.16539/j.ddgzyckx.2017.02.007
[3]王汾连,何高文,赖佩欣.太平洋富稀土深海沉积物及黏土组分(2μm)的Nd同位素特征及物源意义.大地构造与成矿学,2019.43(2):292.doi:10.16539/j.ddgzyckx.2019.02.009
 WANG Fenlian,HE Gaowen and LAI Peixin.Nd Isotopes of the Pelagic Sediments and Clay Fractions (2μm) from the Pacific Ocean and their Provenance Significance.Geotectonica et Metallogenia,2019.43(6):292.doi:10.16539/j.ddgzyckx.2019.02.009
[4]马旭东,钟 焱,陈雅丽.华北克拉通孔兹岩带内孔兹岩系沉积过程对石墨矿床成矿的控制.大地构造与成矿学,2018.优先出版:001.doi:10.16539/j.ddgzyckx.2019.02.015
 MA Xudong,ZHONG Yan,CHEN Yali and QU Xiaoming.The Graphite Mineralized Controlled by the Sedimentary Process of the Khondalite Series, Western North China Craton.Geotectonica et Metallogenia,2018.43(6):001.doi:10.16539/j.ddgzyckx.2019.02.015

备注/Memo

备注/Memo:
收稿日期: 2017-10-18; 改回日期: 2017-11-16; 网络出版日期: 2019-05-10 项目资助: 国家自然科学基金项目(41572174)和中国地质调查局地质调查子项目(DD20160042-1)联合资助。 第一作者简介: 马旭东(1982–), 男, 博士, 副研究员, 主要从事前寒武纪地质学、矿床学研究。Email: maxudong2011@126.com
更新日期/Last Update: 2019-12-15