[1]石文杰,赵 旭,魏俊浩.2018.兴蒙造山带南段白音图嘎地区A型花岗岩地球化学特征及其对古亚洲洋演化的制约.大地构造与成矿学,优先出版:001-22.doi:10.16539/j.ddgzyckx.2019.03.014
 SHI Wenjie,ZHAO Xu,WEI Junhao.2018.Geochemical Characteristics of A-type Granites in Southern Xingmeng Orogen and Constraints on the Evolution of the Paleo-Asian Ocean.Geotectonica et Metallogenia,优先出版:001-22.doi:10.16539/j.ddgzyckx.2019.03.014
点击复制

兴蒙造山带南段白音图嘎地区A型花岗岩地球化学特征及其对古亚洲洋演化的制约
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2018年优先出版
页码:
001-22
栏目:
出版日期:
2019-12-30

文章信息/Info

Title:
Geochemical Characteristics of A-type Granites in Southern Xingmeng Orogen and Constraints on the Evolution of the Paleo-Asian Ocean
作者:
石文杰 赵 旭 魏俊浩 李 欢 周红智
中国地质大学(武汉) 资源学院, 湖北 武汉 430074
Author(s):
SHI Wenjie ZHAO Xu WEI Junhao LI Huan and ZHOU Hongzhi
Faculty of Earth Resources, China University of Geosciences(Wuhan), Wuhan 430074, Hubei, China
关键词:
兴蒙造山带 古亚洲洋 A型花岗岩 造山后伸展
Keywords:
Xingmeng orogen paleo-Asian ocean A-type granite post-collision
分类号:
P595; P597
DOI:
10.16539/j.ddgzyckx.2019.03.014
文献标志码:
A
摘要:
关于兴蒙造山带晚石炭世?早二叠世A型花岗岩成因及其形成构造背景目前仍存在分歧。本文针对兴蒙造山带南段白音图嘎地区二长花岗岩和碱长花岗岩开展了锆石U-Pb年代学以及全岩地球化学研究, 从而探讨其岩石成因以及对晚古生代该区构造演化的制约。分析结果显示: 二长花岗岩和碱长花岗岩的锆石LA-ICP-MS U-Pb定年分别为312±2 Ma和294±2 Ma, 为晚石炭世和早二叠世岩浆活动产物。两者具有相似的地球化学组成, 都有高硅(SiO2=70.83%~73.85%), 高钾(K2O=5.66%~7.97%), 高碱(Na2O+K2O=9.87%~13.29%), 低铝(Al2O3=10.72%~12.93%), 低钙镁(CaO=0.19%~1.22%, MgO= 0.10%~0.26%), 低磷钛(TiO2=0.01%~0.25%, P2O5=0.03%~0.21%)的特征, 均强烈亏损Ba、Sr、P、Ti、Eu, 弱亏损Nb、Ta等元素, 具有较弱的轻重稀土分异以及强负Eu异常((La/Yb)N=2.4~5.8, Eu/Eu*=0.05~0.66), 岩石类型都为过碱质A型花岗岩。此外, 岩石还富K贫Na, 低Ga、Ce, 高Y, 低Rb/Ba、K/Rb值。岩石地球化学特征显示其为新生下地壳熔融, 源区富含辉石和钾长石, 缺乏石榴子石和黑云母, 岩石形成于后碰撞伸展背景中, 而古亚洲洋在312 Ma年前就已闭合。综合区域构造演化史以及同时代岩浆岩的年代学和地球化学特征表明, 由于早石炭世古亚洲洋俯冲板片后撤和弧后拉张作用的影响, 贺根山洋在白音宝力道弧后打开。在晚石炭世造山后伸展大背景下还存在着小规模的晚石炭世?早二叠世俯冲?碰撞造山运动, 从而导致区域上晚石炭世?早二叠世同时存在钙碱性岛弧火山岩以及后碰撞A型花岗岩。
Abstract:
There are differences views on the petrogenesis of the late Carboniferous- Early Permian A-type granites in the south of Xingmeng Orogenic Belt, and Late Carboniferous tectonic setting in this area is also controversial. Therefore, this paper aims at the monzogranite and alkali-feldspar granite in the Baiyintuga area in southern Xingmeng Orogenic Belt to constrain the petrogenesis and tectonic setting by studying the zircon U-Pb geochronology and the whole rock geochemistry of them. The zircon U-Pb dating results of the monzogranite and the alkali-feldspar granite are 312±2 Ma and 294±2 Ma, respectively. The monzogranite and the alkali-feldspar granite have similar geochemical compositions, with high silicon (SiO2=70.83% to 73.85%), high potassium (K2O=5.66% to 7.97%), and high alkali (Na2O+K2O=9.87% to 13.29%), low Al, Ca, Mg, P and Ti (Al2O3=10.72% to 12.93%, CaO=0.19% to 1.22%, MgO=0.10% to 0.26%, TiO2=0.01% to 0.25%, P2O5=0.03% to 0.21%). In addition, they are strongly depleted of Ba, Sr, P, Ti, Eu, weakly depleted Nb. and Ta, and have weak fraction between light rare earth element and heavy rare earth element with (La/Yb)N values of 2.4 to 5.8. They also have strong negative Eu anomalies with Eu/Eu* values of 0.05 to 0.66, indicating both of them are A-type granites. The geochemical characteristics of the rocks show that they are derived from melting of juvenile lower crust and the source region contains pyroxene and feldspar, but is lack of garnet and biotite. The Baiyintuga A-type granites are generated in a post-collisional extension setting. The Paleo-Asian Ocean has closed before Late Carboniferous. In combination with the tectonic evolution of the Xingmeng Orogen and the geochronological and geochemical characteristics of contemporary intrusive rocks, it is concluded that Hegenshan back-arc basin opened in Baolidao due to the slab rollback and back-arc extension in Late Carboniferous. There is still small scale ocean subduction of the back-arc ocean during late Carboniferous to Permian in the post-orogenic extension setting, which resulted in the existence of calc-alkali island arc volcanic rocks and post-collision A-type granites in the late Carboniferous.

参考文献/References:

鲍庆中, 张长捷, 吴之理, 王宏, 李伟, 桑加和, 刘永生. 2007. 内蒙古白音高勒地区石炭纪闪长岩SHRIMP锆石U-Pb年代学及其意义. 吉林大学学报(地球科学版), 37(1): 15-23.
陈彦, 张志诚, 李可, 罗志文, 汤文豪, 李秋根. 2014. 内蒙古西乌旗地区二叠纪双峰式火山岩的年代学、地球化学特征和地质意义. 北京大学学报(自然科学版), 50(5): 843-858.
晨辰, 张志诚, 郭召杰, 李建锋, 冯志硕, 汤文豪. 2012. 内蒙古达茂旗满都拉地区早二叠世基性岩的年代学、地球化学及其地质意义. 中国科学: 地球科学, 42(3): 343-358.
程银行, 滕学建, 辛后田, 杨俊泉, 冀世平, 张永, 李艳锋. 2012. 内蒙古东乌旗狠麦温都尔花岗岩SHRIMP锆石U-Pb年龄及其地质意义. 岩石矿物学杂志, 31(3): 323-334.
高峰, 郑常青, 姚文贵, 杨俊泉, 冀世平. 张永. 李艳锋. 2013. 大兴安岭北段扎兰屯哈多河“花岗质糜棱片麻岩”年代学及地球化学特征研究. 地质学报, 87(9): 1277-1292.
何付兵, 徐吉祥, 谷晓丹, 程新彬, 魏波, 李昭, 梁亚南, 王泽龙, 黄淇. 2013. 内蒙古东乌珠穆沁旗阿木古楞复式花岗岩体时代、成因及地质意义. 地质论评, 59(6): 1150-1164.
洪大卫, 黄怀曾, 肖宜君, 徐海明, 靳满元. 1994. 内蒙古中部二叠纪碱性花岗岩及其地球动力学意义. 地质学报, 68(3): 219-230.
洪大卫, 王式洸, 谢锡林, 张季生. 2000. 兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长. 地学前缘, 7(2): 441-456.
黄波, 付冬, 李树才, 葛梦春, 周文孝. 2016. 内蒙古贺根山蛇绿岩形成时代及构造启示. 岩石学报, 32(1): 158-176.
贾小辉, 王强, 唐功建. 2009. A型花岗岩的研究进展及意义. 大地构造与成矿学, 33(3): 465-480.
李锦轶, 高立明, 孙桂华, 李亚萍, 王彦斌. 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束. 岩石学报, 23(3): 565-582.
李可, 张志诚, 冯志硕, 李建锋, 汤文豪, 罗志文. 2014. 内蒙古中部巴彦乌拉地区晚石炭世?早二叠世火山岩锆石SHRIMP U-Pb定年及其地质意义. 岩石学报, 30(7): 2041-2054.
李可, 张志诚, 冯志硕, 李建锋, 汤文豪, 罗志文, 陈彦. 2015. 兴蒙造山带中段北部晚古生代两期岩浆活动及其构造意义. 地质学报, 89(2): 272-288.
刘建峰, 迟效国, 张兴洲, 马志红, 赵芝, 王铁夫, 胡兆初, 赵秀羽. 2009. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义. 地质学报, 83(3): 365-376.
路彦明, 潘懋, 卿敏, 张玉杰, 韩先菊, 朝银银. 2012. 内蒙古毕力赫含金花岗岩类侵入岩锆石U-Pb年龄及地质意义. 岩石学报, 28(3): 993-1004.
聂凤军, 许东青, 江思宏, 胡朋. 2009. 内蒙古苏莫查干敖包莹石矿区流纹岩锆石SHRIMP定年及地质意义. 地质学报, 83(4): 496-504.
邵济安, 唐克东, 何国琦. 2014. 内蒙古早二叠世构造古地理的再造. 岩石学报, 30(7): 1858-1866.
施光海, 刘敦一, 张福勤, 简平, 苗来成, 石玉若, 陶华. 2003. 中国内蒙古锡林郭勒杂岩SHRIMP锆石U-Pb年代学及意义. 科学通报, 48(20): 2187-2192.
施光海, 苗来成, 张福勤, 简平, 范蔚茗, 刘敦一. 2004. 内蒙古锡林浩特A型花岗岩的时代及区域构造意义. 科学通报, 49(4): 384-389.
唐克东. 1992. 中朝板块北侧褶皱带构造演化及成矿规律. 北京: 北京大学出版社: 305.
汤文豪, 张志诚, 李建锋, 冯志硕, 晨辰. 2011. 内蒙古苏尼特右旗查干诺尔石炭系本巴图组火山岩地球化学特征及其地质意义. 北京大学学报(自然科学版), 47(2): 321-330.
王树庆, 胡晓佳, 杨泽黎, 赵华雷, 张永, 郝爽, 何丽. 2018. 兴蒙造山带中段锡林浩特跃进地区石炭纪岛弧型侵入岩: 年代学、地球化学、Sr-Nd-Hf同位素特征及其地质意义. 地球科学, 43(3): 672-695.
王树庆, 胡晓佳, 赵华雷, 辛后田, 杨泽黎, 刘文刚, 何丽. 2017. 内蒙古京格斯台晚石炭世碱性花岗岩年代学及地球化学特征——岩石成因及对构造演化的约束. 地质学报, 91(7): 1467-1482.
吴锁平, 王梅英, 戚开静. 2007. A型花岗岩研究现状及其述评. 岩石矿物学杂志, 26(1): 57-66.
许保良, 阎国翰, 张臣, 李之彤, 何中甫. 1998. A型花岗岩的岩石学亚类及其物质来源. 地学前缘, 5(3): l13- 124.
许立权, 鞠文信, 刘翠, 贺宏云, 李满英. 2012. 内蒙古二连浩特北部阿仁绍布地区晚石炭世花岗岩Sr-Yb分类及其成因. 地质通报, 31(9): 1410-1419.
徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857.
薛怀民, 郭利军, 侯增谦, 周喜文, 童英, 潘晓菲. 2009. 中亚?蒙古造山带东段的锡林郭勒杂岩: 早华力西期造山作用的产物而非古老陆块?——锆石SHRIMP U-Pb年代学证据. 岩石学报, 25(8): 2001-2010.
杨泽黎, 王树庆, 胡晓佳, 赵华雷, 李承东, 辛后田, 孙立新. 2017. 内蒙古吉尔嘎郎图早古生代岩体成因—年代学、地球化学及Nd-Hf同位素制约. 地质通报. 36(8): 1369-1384.
张旗. 2013. A型花岗岩的标志和判别—兼答汪洋等对“A型花岗岩的实质是什么”的质疑. 岩石矿物学杂志, 32(2): 267-274.
张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么? 岩石矿物学杂志, 31(4): 621-626.
张玉清, 许立权, 康小龙, 宝音乌力吉. 2009. 内蒙古东乌珠穆沁旗京格斯台碱性花岗岩年龄及意义. 中国地质, 36(5): 988-995.
周文孝, 葛梦春. 2013. 内蒙古锡林浩特地区中元古代锡林浩特岩群的厘定及其意义. 地球科学, 38(4): 715- 724.
朱永峰, 孙世华, 毛骞, 赵光. 2004. 内蒙古锡林格勒杂岩的地球化学研究: 从Rodinia聚合到古亚洲洋闭合后碰撞造山的历史记录. 高校地质学报, 10(3): 343- 355.
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79.
Black L P and Gulson B L. 1978. The age of the Mud Tank carbonatite, Strangways Range Northern Territory. BMR Journal of Australian Geology and Geophysics, 3: 227-232.
Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1-2): 1-29.
Chen B, Jahn B M and Tian W. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision related magmas and forearc sediments. Journal of Asian Earth Sciences, 34(3): 245-257.
Clemens J D, Holloway J R and White A J R. 1986. Origin of A-type granites: Experimental constraints. American Mineral, 71: 317-324.
Collins W J, Beams S D, White A J R and Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80: 189-200.
Creaser R A, Price R C and Wormald R J. 1991. A-type granites revisited: Assessment of aresidual-source model. Geology, 19: 163-166.
Dall’Agonl R, Frost C D and R?m? O T. 2012. IGCP Project 510 “A-type granites and related rocks through time”: Project vita, results, and contribution to granite research. Lithos, 151: 1-16.
Dall’Agonl R and Oliveira D C. 2007. Oxidized, magnetite- series, rapakivi-type granites of Carajás, Brazil: Impli?cations for classi?cation and petrogenesis of A-type granites. Lithos, 93: 215-233.
Eby G N. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and specula?tions on their petrogenesis. Lithos, 26: 115-134.
Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20: 641-644.
Engel C G and Fisher R L. 1975. Granitic to ultramafic rock complexes of the Indian Ocean ridge system, western Indian Ocean. Geological Society of America, 86: 1553- 1578.
Frost C D and Frost B R. 1997. Reduced rapakivi-type granites: The tholeiite connection. Geology, 25(7): 647- 650.
Frost C D and Frost B R. 2011. On ferroan (A-type) granitoids: Their compositional variability and modes of origin. Journal of Petrology, 52: 39-53.
Frost C D, Frost B R, Chamberlain K R and Edwards B R. 1999. Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: A reduced, rapakivi-type anorogenic granite. Journal of Petrology, 40: 1771-1802.
Frost C D, R?m? O T and Dall′Agnol R. 2007. IGCP project 510-A-type granites and related rocks through time. Lithos, 97(1-2): vii-xiii.
Furman T M, Peter S and Frey F. 1992. Evolution of Icelandic central volcanoes: Evidence from the Austur?horn intrusion, southeastern Iceland. Bulletin of Volca?nology, 55(1): 45-62.
Giret A. 1990. Typology, evolution and origin of the Kerguelen plutonic series, Indian Ocean: A review. Geological Journal, 25: 239-247.
Harris C. 1983. The petrology of lava sand associated plutonic inclusions of Ascension Island. Journal of Petrology, 24: 424-470.
Hong D W, Wang S G, Han B F and Jin M Y. 1996. Post- orogenic alkaline granites from China and compa-risons with an orogenic alkaline granites elsewhere. Journal of Southeast Asian Earth Sciences, 13(1): 13-27.
Hu C S, Li W B, Xu C, Zhong R C and Zhu F. 2015a. Geochemistry and zircon U-Pb-Hf isotopes of the granitoids of Baolidao and Halatu Plutons in Sonidzuoqi area, Inner Mongolia: Implications for petrogenesis and geodynamic setting. Journal of Asian Earth Sciences, 97(B): 294-306.
Hu Z C, Zhang W, Liu Y S, Gao S, Li M, Zong K Q, Chen H H and Hu S H. 2015b. “Wave” signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis: Application to lead isotope analysis. Analytical Chemistry, 87: 1152- 1157.
Jackson S E, Pearson N J, Griffin W L and Belousova E A. 2004. The application of Laser Ablation-inductively Coupled Plasma-mass Spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69.
Jahn B, Capdevila R, Liu D Y, Vernon A and Badarch G. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd isotopic evidence, and implications for Phane?ro?zoic crustal growth. Journal of Asian Earth Sciences, 23(5): 629-653.
Jahn B, Wu F Y and Chen B. 2000. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2): 82-92.
Jahn B M, Litvinovsky B A, Zanvilevich A N and Reichow M. 2009. Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt: Evolution, petroge?nesis and tectonic significance. Lithos, 113(3-4): 521-539.
Jian P, Kr?ner A, Windly B F, Shi Y R, Zhang W, Zhang L Q and Yang W R. 2012. Carboniferous and Cretaceous mafic-ultramafic massifs in Inner Mongolia (China): A SHRIMP zircon and geochemical study of the previously presumed integral “Hegenshan Ophiolite”. Lithos, 142- 143: 48-66.
Jian P, Liu D Y, Kr?ner A, Windley B F, Shi Y R, Zhang F Q, Shi G H, Miao L C, Zhang W, Zhang Q, Zhang L Q and Ren J S. 2008. Time scale of the Early to Mid-Paleozoic orogenic cycle of the longlived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for conti?nental growth. Lithos, 101(3-4): 233-259.
Jian P, Liu D Y, Kr?ner A, Windley B F, Shi Y R, Zhang W, Zhang F Q, Miao L C, Zhang L Q and Tomurhuu D. 2010. Evolution of a Permian intra oceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1-2): 169-190.
King P L, White A J R, Chappell B W and Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australian. Journal of Petrology, 38: 371-391.
Lamb M and Badarch G. 2001. Paleozoic sedimentary basins and volcanic arc systems of southern Mongolia: New geochemical and petrographic constraints. Geological Society of America Memoirs, 194: 117-149.
Landenberger B and Collins W J. 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust: Evidence from the Chaelundi complex, Eastern Australia. Journal of Petrology, 37: 145-170.
Li Y L, Zhou H W, Brouwer F M, Wijbrans J R, Zhong Z Q and Liu H F. 2011. Tectonic significance of the Xilin Gol complex, Inner Mongolia, China: Petrological, geochemical and U-Pb zircon age constraints. Journal of Asian Earth Sciences, 42(5): 1018-1029.
Li Y L, Zhou H W, Brouwer F M, Xiao W J, Wijbrans J R, Zhao J H, Zhong Z Q and Liu H F. 2014. Nature and timing of the Solonker suture of the Central Asian Orogenic Belt: Insights from geochronology and geochemistry of basic intrusions in the Xilin Gol complex, Inner Mongolia, China. International Journal of Earth Sciences, 103(1): 41-60.
Liégeois J P. 1998. Preface—Some words on the post-colli?sional magmatism. Lithos, 45: XV-XVII.
Liu J F, Li J Y, Chi X G, Qu J F, Hu Z C, Fang S and Zhang Z. 2013. A late-Carboniferous to early early-Permian subduction accretion complex in Daqing pasture, southeastern Inner Mongolia: Evidence of northward subduction beneath the Siberian paleoplate southern margin. Lithos, 177: 285-296.
Loiselle M C and Wones D R. 1979. Characteristics and origin of anorogenic granites. Geological Society of America, Abstract with Programs, 11: 468.
Ludwig K R. 2003. User’s Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication: 1-71.
Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643.
Miao L C, Fan W M, Liu D Y, Zhang F Q, Shi Y R and Guo F. 2008. Geochronology and geochemistry of the Hegen?shan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia?Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences, 32: 348-370.
Pearce R R, Harris N B W and Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956-983.
Pollock J C and Hibbard J P. 2010. Geochemistry and tectonic significance of the Stony Mountain gabbro, North Carolina: Implications for the Early Paleozoic evolution of Carolinia. Gondwana Research, 17(2-3): 500-515.
Rollinson H R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: Longman Group UK Ltd.
Sisson T W, Ratajesti K, Hankins W B and Glazner A F. 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148: 635-661.
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes // Saunders A D and Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 314-353.
Tong Y, Jahn B M, Wang T, Hong D W, Smith E I, Sun M, Gao J F, Yang Q D and Huang W. 2015. Permian alkaline granites in the Erenhot-Hegenshan belt, northern Inner Mongolia, China: Model of generation, time of emplacement and regional tectonic significance. Journal of Asian Earth Sciences, 97: 320-336.
Turner S P, Foden J D and Morrison R S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway ridge, South Australia. Lithos, 28: 151-179.
Whalen J B, Currie K L and Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407-419.
Whitaker M L, Nekvasil H, Lindsley D H and Mccurry M. 2008. Can crystallization of olivine tholeiite give rise to potassic rhyolites? An experimental investigation. Bulletin of Volcanology, 70: 417-434.
Widom E, Gill J B and Schmincke H U. 1993. Syenite nodules as a long-term record ofmagmatic activity in Agua-De-Pao volcano, Sao-Miguel, Azores. Journal of Petrology, 34(5): 929-953.
Wison M. 1989. Igneous Petrogenesis. London: Unwim Hyman.
Wu F Y, Sun D Y, Li H M, Jahn B and Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187: 143-173.
Xiao W J, Windley B F, Hao J and Zhai M G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian Orogenic Belt. Tectonics, 22(6): 1069-1088.
Yang J H, Wu F Y, Chung S L, Wilde S A and Chu M F. 2006. A hybrid origin for the Qianshan A-type granite, Northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89: 89-106.
Zhang S H, Zhao Y, Liu J M and Hu Z C. 2016. Different sources involved in generation of continental arc volcanism: The Carboniferous-Permian volcanic rocks in the northern margin of the North China Block. Lithos, 240-243: 382-401.
Zhang S H, Zhao Y, Song B, Hu J M, Liu S W, Yang Y H, Chen F K, Liu X M and Liu J. 2009. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton. Geological Society of America Bulletin, 121: 181-200.
Zhang X H, Mao Q, Zhang H F, Zhai M G, Yang Y H and Hu Z C. 2011. Mafic and felsic magma interaction during the construction of high-K calc-alkaline plutons within a metacratonic passivemargin: The Early Permian Guyang batholith from the northern North China Craton. Lithos, 125: 569-591.
Zhang X H, Yuan L L, Xue F H, Yan X and Mao Q. 2015. Early Permian A-type granites from central Inner Mongolia, North China: Magmatic tracer of post-colli?sional tectonics and oceanic crustal recycling. Gondwana Research, 28: 311-327.
Zhang X H, Zhang H F, Tang Y J, Wilde S A and Hu Z C. 2008. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology, 249: 262-281.
Zhao X F, Zhou M F, Li J W and Wu F Y. 2008. Association of Neoproterozoic A- and I-type granites in South China: Implications for generation of A-type granites in a subduction-related environment. Chemical Geology, 257: 1-15.

相似文献/References:

[1]杨永胜,吕新彪*,高荣臻.黑龙江争光金矿床英云闪长斑岩年代学、地球化学及地质意义.大地构造与成矿学,2016.4(4):674.doi:10.16539/j.ddgzyckx.2016.04.005
 YANG Yongsheng,LV Xinbiao*,GAO Rongzhen.Geochronology, Geochemistry and Geological Significance of the Tonalite Porphyry in Zhengguang Gold Deposit, Heilongjiang Province.Geotectonica et Metallogenia,2016.优先出版:674.doi:10.16539/j.ddgzyckx.2016.04.005
[2]李红英,周志广*,李鹏举.内蒙古西乌旗晚石炭世–早二叠世伸展事件—— 来自大石寨组火山岩的证据.大地构造与成矿学,2016.4(5):996.doi:10.16539/j.ddgzyckx.2016.05.009
 LI Hongying,ZHOU Zhiguang*,LI Pengju.A Late Carboniferous-Early Permian Extensional Event in Xi Ujimqin Qi, Inner Mongolia—Evidence from Volcanic Rocks of Dashizhai Formation.Geotectonica et Metallogenia,2016.优先出版:996.doi:10.16539/j.ddgzyckx.2016.05.009
[3]赵 衡,张 进,王艳楠.黑龙江科洛杂岩变形特征、阶段和意义.大地构造与成矿学,2017.41(4):617.doi:10.16539/j.ddgzyckx.2017.04.001
 ZHAO Heng,ZHANG Jin,WANG Yannan and ZHANG Beihang.The Deformation Features, Phases and Significance of Keluo Complex in Nenjiang Area, Heilongjiang Province.Geotectonica et Metallogenia,2017.优先出版:617.doi:10.16539/j.ddgzyckx.2017.04.001

备注/Memo

备注/Memo:
收稿日期: 2018-05-14; 改回日期: 2018-09-29
项目资助: 中国地质大学(武汉)中央高校基本科研业务费专项基金(CUG160830, CUGL17043和CUG180609)资助。
第一作者简介: 石文杰(1985–), 男, 讲师, 主要从事矿床地球化学、成矿规律与成矿预测研究工作。Email: swjhaoo@126.com
更新日期/Last Update: 2019-06-17