[1]李 阳,李三忠*,郭玲莉.2019.拆离型微地块: 洋陆转换带和洋中脊变形机制.大地构造与成矿学,43(4):779-794.doi:10.16539/j.ddgzyckx.2019.04.011
 LI Yang,LI Sanzhong*,GUO Lingli.2019.Detachment-derived Micro-blocks: New Insights for the Deformation Me?chanism of the Ocean-continent Transition and the Mid-ocean Ridge.Geotectonica et Metallogenia,43(4):779-794.doi:10.16539/j.ddgzyckx.2019.04.011
点击复制

拆离型微地块: 洋陆转换带和洋中脊变形机制
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2019年43卷04期
页码:
779-794
栏目:
微板块构造专辑
出版日期:
2019-08-15

文章信息/Info

Title:
Detachment-derived Micro-blocks: New Insights for the Deformation Me?chanism of the Ocean-continent Transition and the Mid-ocean Ridge
文章编号:
1001-1552(2019)04-0779-016
作者:
李 阳12 李三忠12* 郭玲莉12 周在征12 索艳慧12 王光增12 朱俊江12 刘一鸣12 刘 博12 周 洁12 李园洁12 张国伟123
1.海底科学与探测技术教育部重点实验室, 中国海洋大学 海洋高等研究院和海洋地球科学学院, 山东 青岛 266100; 2.青岛海洋科学与技术国家实验室 海洋矿产资源评价与探测技术功能实验室, 山东 青岛 266237; 3.西北大学 地质学系, 陕西 西安 710069
Author(s):
LI Yang12 LI Sanzhong12* GUO Lingli12 ZHOU Zaizheng12 SUO Yanhui12WANG Guangzeng12 ZHU Junjiang12 LIU Yiming12 LIU Bo12ZHOU Jie12 LI Yuanjie12 and ZHANG Guowei123
1.Key Lab of Submarine Geosciences and Prospecting Techniques, MOE, Institute for Advanced Ocean Study and College of Marine Geosciences, Ocean University of China, Qingdao 266100, Shandong, China; 2.Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China; 3.Department of Geology, Northwest University, Xi’ an 710069, Shaanxi, China
关键词:
拆离断层 洋陆转换带 微地块 海洋核杂岩 海底扩张 板块构造
Keywords:
detachment fault ocean-continent transition zone micro-block oceanic core complex seafloor spreading plate tectonics
分类号:
P542
DOI:
10.16539/j.ddgzyckx.2019.04.011
文献标志码:
A
摘要:
板块构造理论从其诞生起已经统治固体地球科学领域半个世纪, 然而也临着巨大的挑战, 如板块“登陆”、起源以及动力学等问题。微地块构造理论的提出有可能解决板块构造的这三大难题。拆离型微地块是9种微地块中非常重要的类型之一, 在慢速-超慢速洋中脊和洋陆转换带中广有分布。围限这类微地块的边界主要是切割岩石圈的拆离断层, 使其脱离母板块而成为独立演化的微地块。因此, 岩石圈尺度的拆离断层也应为除洋中脊之外的第二种离散型边界。根据拆离块体的属性及发育的构造位置, 拆离型微地块可进一步划分为拆离微陆块和拆离微洋块, 分别对应了陆缘和洋内拆离断层作用的结果。研究拆离型微地块形成和演化过程对于丰富和发展板块构造理论具有重要意义。本文结合最新研究进展, 重点综述拆离型微地块的概念、特征、成因机制以及构造意义, 以拓展微地块构造理论内涵。
Abstract:
Plate tectonics theory has dominated the solid earth science for half century.However, with the development of earth science it is now facing great challenges, such as: (1) plate tectonics, which was proposed on knowledge of ocean, has difficulty in explaining some of the complicated continental tectonics; (2) how and when the plate tectonic regime started remains unsolved; (3) the driving force of the plate tectonics is still unclear.Nevertheless, these issues can be addressed by the micro-block tectonics theory.On the basis of distinct formation mechanisms, micro-blocks can be divided into at least nine types, i.e.detachment-derived micro-block, rifting-derived micro-block, transform-derived micro-block, propagation-derived micro-block, jumping-derived micro-block, subduction-derived micro-block, accretion-derived micro-block, collision-derived micro-block, and delamination-derived micro-mantle block.Detachment-derived micro-block is one of the most widely-developed blocks that can be identified all over the world, especially in the ocean-continent transition zones and the slow-spreading or ultraslow-spreading ridges.The boundary of this type of block is lithospheric-scale detachment fault with corrugated surface, large offset and long-life cycle, leading to the completely separation of the micro-block from its parent plate.Therefore, the lithospheric-scale detachment fault can be regarded as another divergent boundary in addition to the mid-ocean ridge.According to the tectonic setting and nature of the block, detachment-derived micro-block can further be divided into continental and oceanic micro-blocks, corresponding to detachment faulting in the continental margin and the ocean, respectively.In this contribution, combining the newest progress in the relevant studies we review the concept, characteristics, mechanisms and tectonic implications of the detachment-derived micro-block, aiming to extend the micro-block plate theory and to enhance our understanding of the plate tectonics.

参考文献/References:

敖松坚, 肖文交, 杨磊, 张继恩, 万博, 张志勇.2017.造山带中古洋壳核杂岩的识别与地质意义.中国科学: 地球科学, 47(1): 1-22.
郭玲莉, 李三忠, 赵淑娟, 刘博, 索艳慧, 王倩, 周在征.2017.洋-陆转换带类型与成因机制.地学前缘, 24(4): 320-328.
郭令智, 舒良树, 卢华复, 施央申, 马瑞士, 张庆龙, 王良书, 贾东.2000.中国地体构造研究进展综述.南京大学学报(自然科学版), 36(1): 1-17.
李洪林, 李江海, 王洪浩, 张华添.2014.海洋核杂岩形成机制及其热液硫化物成矿意义.海洋地质与第四纪地质, 34(2): 53-59.
李三忠, 吕海青, 侯方辉, 郭晓玉, 金宠, 刘保华.2006.海洋核杂岩.海洋地质与第四纪地质, 26(1): 47-52.
李三忠, 索艳慧, 李玺瑶, 王永明, 曹现志, 王鹏程, 郭玲莉, 于胜尧, 兰浩圆, 李少俊, 赵淑娟, 周在征, 张臻, 张国伟.2018b.西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应.科学通报, 63(16): 1550-1593.
李三忠, 索艳慧, 刘博, 刘永江, 李玺瑶, 赵淑娟, 朱俊江, 王光增, 张国伟.2018a.微板块构造理论: 全球洋内与陆缘微地块研究的启示.地学前缘, 25(5): 323-356.
李三忠, 索艳慧, 刘鑫, 赵淑娟, 余珊, 戴黎明, 许立青, 张臻, 刘为勇, 李怀明.2015a.印度洋构造过程重建与成矿模式: 西南印度洋洋中脊的启示.大地构造与成矿学, 39(1): 30-43.
李三忠, 索艳慧, 余珊, 赵淑娟, 戴黎明, 曹花花, 张臻, 刘为勇, 张国堙.2015b.西南印度洋构造地貌与构造过程.大地构造与成矿学, 39(1): 15-29.
李三忠, 张国伟, 周立宏, 赵国春, 刘鑫, 索艳慧, 刘博, 金宠, 戴黎明.2011.中、新生代超级汇聚背景下的陆内差异变形: 华北伸展裂解和华南挤压逆冲.地学前缘, 18(3): 79-107.
李源, 李瑞保, 董天赐, 杨胜标, 裴磊.2016.日喀则蛇绿岩白马让岩体的穹窿形结构及构造意义.科学通报, 61(25): 2823-2833.
梁琛岳, 刘永江, 李伟, 韩国卿, 温泉波, Neubauer F.2012.黑龙江省嫩江地区科洛杂岩隆升时代.地质科学, 47(2): 360-375.
于志腾, 李家彪, 丁巍伟, 张洁, 梁裕扬, 朱磊.2014.大洋核杂岩与拆离断层研究进展.海洋科学进展, 32(3): 415-426.
余星, 初凤友, 董彦辉, 李小虎, 唐立梅.拆离断层与大洋核杂岩: 一种新的海底扩张模式.地球科学, 38(5): 995-1004.
张国伟, 董云鹏, 姚安平.2002.关于中国大陆动力学与造山带研究的几点思考.中国地质, 29(1): 7-13.
张国伟, 张本仁, 袁学诚, 肖庆辉.2001.秦岭造山带与大陆动力学.北京: 科学出版社: 1-885.
Andreani M, Mével C, Boullier A M and Escartín J.2007.Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic period?tites.Geochemistry Geophysics Geosystems, 8, Q02012.doi: 10.1029/2006GC001373
Axen G J.2007.Research focus: Significance of large-displacement, low-angle normal faults.Geology, 35(3): 287-288.
Baines A G, Cheadle M J, Dick H J B, Scheirer A H, John B E, Kusznir N J and Matsumoto T.2003.Mechanism for generating the anomalous uplift of oceanic core complexes: Atlantis Bank, southwest Indian Ridge.Geology, 31(12): 1105-1108.
Baines A G, Cheadle M J, John B E and Schwartz J J.2008.The rate of oceanic detachment faulting at Atlantis Bank, SW Indian Ridge.Earth and Planetary Science Letters, 273(1-2): 105-114.
Bird P.2003.An updated digital model of plate boundaries.Geochemistry Geophysics Geosystems, 4(3), 1027.doi: 10.1029/2001GC000252.
Blackman D K, Canales J P and Harding A.2009.Geophysical signatures of oceanic core complexes.Geophysical Journal International, 178(2): 593-613.
Boschi C, Früh-Green G L, Delacour A, Karson J A and Kelley D S.2006.Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30°N), Geochemistry Geophysics Geosystems, 7, Q01004.doi: 10.1029/2005GC001074
Buck W R, Lavier L L and Poliakov A N.2005.Modes of faulting at mid-ocean ridges.Nature, 434(7034): 719-723.
Canales J P, Tucholke B E and Collins J A.2004.Seismic reflection imaging of an oceanic detachment fault: Atlantis megamullion (Mid-Atlantic Ridge, 30°10'N).Earth and Planetary Science Letters, 222(2): 543-560.
Cann J R, Blackman D K, Smith D K, McAllister E, Janssen B, Mello S, Avgerinos E, Pascoe A R and Escartín J.1997.Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge.Nature, 385: 329-332.
Cann J R, Smith D K, Escartín J and Schouten H.2015.Tectonic evolution of 200 km of Mid-Atlantic Ridge over 10 million years: Interplay of volcanism and faulting.Geochemistry Geophysics Geosystems, 16(7): 2303-2321.
Cannat M, Mevel C, Maia M, Deplus C, Durand C, Gente P, Agrinier P, Belarouchi A, Dubuisson G, Humler E and Reynolds J.1995.Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°-24°N).Geology, 23(1): 49-52.
Cannat M, Sauter D, Escartin J, Lavier L and Picazo S.2009.Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges.Earth and Planetary Science Letters, 288(1-2): 174-183.
Choi E and Buck W R.2012.Constraints on the strength of faults from the geometry of rider blocks in continental and oceanic core complexes.Journal of Geophysical Research, 117, B04410.doi: 10.1029/2011JB008741
Dannowski A, Grevemeyer I, Ranero C R, Ceuleneer G, Maia M, Morgan J P and Gente P.2010.Seismic structure of an oceanic core complex at the Mid-Atlantic Ridge, 22°19′N.Journal of Geophysical Research: Solid Earth, 115, B07106, doi: 10.1029/2009JB006943
de Martin B J, Sohn R A, Canales J P and Humphris S E.2007.Kinematics and geometry of active detachment faulting beneath the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid Atlantic Ridge.Geology, 35(8): 711-714.
Dick H J B, Natland J H, Alt J C, Bach W, Bideau D, Gee J S, Haggas S, Hertogen J G H, Hirth G, Holm P M, Ildefonse B, Iturrino G J, John B E, Kelley D S, Kikawa E, Kingdon A, LeRoux P J, Maeda J, Meyer P S, Miller D J, Naslund H R, Niu Y L, Robinson P T, Snow J, Stephen R A, Trimby P W, Worm H U and Yoshinobu A.2000.A long in situ section of the lower oceanic crust: Results of ODP Leg 176 drilling at the Southwest Indian Ridge.Earth and Planetary Science Letters, 179(1): 31-51.
Dick H J B, Tivey M A and Tucholke B E.2008.Plutonic foundation of a slow spreading ridge segment: Oceanic core complex at Kane Megamullion, 23°30′N, 45°20′W.Geochemistry Geophysics Geosystems, 9, Q05014.doi: 10.1029/2007GC001645
Ding W W, Sun Z, Dadd K, Fang Y X and Li J B.2018.Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes.Earth and Planetary Science Letters, 488: 115-125.
Escartín J and Canales J P.2011.Detachments in oceanic lithosphere: Deformation, magmatism, fluid flow, and ecosystems.Eos Transactions American Geophysical Union, 92(4): 31.
Escartín J, Mével C, MacLeod C J and McCaig A M.2003.Constraints on deformation conditions and the origin of oceanic detachments: The Mid Atlantic Ridge core complex at 15°45′N.Geochemistry Geophysics Geosystems, 4(8), 1067.doi: 10.1029/2002GC000472
Escartín J, Mével C, Petersen S, Bonnemains D, Cannat M, Andreani M, Augustin N, Bezos A, Chavagnac V, Choi Y, Godard M, Haaga K, Hamelin C, Ildefonse B, Jamieson J, John B, Leleu T, MacLeod CJ, Massot-Campos M, Nomikou P, Olive JA, Paquet M, Rommevaux C, Rothenbeck M, Steinfuhrer A, Tominaga M, Triebe L, Campos R, Gracias N and Garcia R.2017.Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13°30′N, Mid Atlantic Ridge).Geochemistry Geophysics Geosystems, 18: 1451-1482.
Escartín J, Smith D K, Cann J, Schouten H, Langmuir C H and Escrig S.2008.Central role of detachment faults in accretion of slow-spreading oceanic lithosphere.Nature, 455(7214): 790-794.
Frisch W, Meschede M and Blakey R C.2011.Plate Tectonics.Springer Berlin Heidelberg: 1-212.
Garcés M and Gee J S.2007.Paleomagnetic evidence of large footwall rotations associated with low-angle faults at the Mid-Atlantic Ridge.Geology, 35(3): 279-282.
Grimes C B, Cheadle M J, John B E, Reiners P W and Wooden J L.2011.Cooling rates and the depth of detachment faulting at oceanic core complexes: Evidence from zircon Pb/U and (U-Th)/He ages.Geochemistry Geophysics Geosystems, 12, Q0AG01.doi: 10.1029/2010GC003391
Hayman N W, Grindlay N R, Perfit M R, Mann P, Leroy S and de Lépinay B M.2011.Oceanic core complex development at the ultraslow spreading Mid-Cayman Spreading Center.Geochemistry Geophysics Geosy?stems, 12, Q0AG02.doi: 10.1029/2010GC003240
Ildefonse B, Blackman D K, John B E, Ohara Y, Miller D J, MacLeod C J and the Expedition 304/305 Scientists.2007.Oceanic core complexes and crustal accretion at slow-spreading ridges.Geology, 35(7): 623-626.
John B E, Foster D A, Murphy J M, Cheadle M H, Baines A G, Fanning M and Copeland P.2004.Determining the cooling history of in situ lower oceanic crust — Atlantis Bank, SW Indian Ridge.Earth and Planetary Science Letters, 222(1): 145-160.
Karson J A, Früh-Green G L, Kelley D S, Williams E A, Yoerger D R and Jakuba M.2006.Detachment shear zone of the Atlantis Massif core complex, Mid-Atlantic Ridge, 30°N.Geochemistry Geophysics Geosystems, 7, Q06016.doi: 10.1029/2005GC001109
Kodaira S, Mjelde R, Gunnarsson K, Shiobara H and Shimamura H.1998.Structure of the Jan Mayen microcontinent and implications for its evolution.Geophysical Journal International, 132(2): 383-400.
Kurz M D, Warren J M and Curtice J.2009.Mantle deformation and noble gases: Helium and neon in oceanic mylonites.Chemical Geology, 266(1): 10-18.
Li S Z, Suo Y H, Li X Y, Liu B, Dai L M, Wang G Z, Zhou J, Li Y, Liu Y M, Cao X Z, Somerville I, Mu D L, Zhao S J, Liu J P, Meng F, Zhen L B, Zhao L T, Zhu J J, Yu S Y, Liu Y J and Zhang G W.2018.Microplate tectonics: New insights from micro-blocks in the global oceans, continental margins and deep mantle.Earth-Science Reviews, 185: 1029-1064.
Liao J and Gerya T.2015.From continental rifting to seafloor spreading: Insight from 3D thermo-mechanical modeling.Gondwana Research, 28: 1329-1343.
Lister G S and Davis G A.1989.The origin of metamorphic core complexes and detachment faults formed during tertiary continental extension in the northern Colorado river region, U.S.A.Journal of Structural Geology, 11(1): 65-94.
MacLeod C J, Carlut J, Escartín J, Horen H and Morris A.2011.Quantitative constraint on footwall rotations at the 15°45′N oceanic core complex, Mid-Atlantic Ridge: Implications for oceanic detachment fault processes.Geochemistry Geophysics Geosystems, 12(5), Q0AG03.doi: 10.1029/2011GC003503
MacLeod C J, Searle R C, Murton B J, Casey J F, Mallows C, Unsworth S C, Achenbach K L and Harris M.2009.Life cycle of oceanic core complexes.Earth and Planetary Science Letters, 287(3): 333-344.
Manatschal G.2004.New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps.International Journal of Earth Sciences, 93(3): 432-466.
Matthews K J, Müller R D and Sandwell D T.2016.Oceanic microplate formation records the onset of India-Eurasia collision.Earth and Planetary Science Letters, 433: 204-214.
Miranda E A and John B E.2010.Strain localization along the Atlantis Bank oceanic detachment fault system, Southwest Indian Ridge.Geochemistry Geophysics Geosystems, 11, Q04002.doi: 10.1029/2009GC002646
Morris A, Gee J S, Pressling N, John B E, MacLeod C J, Grimes C B and Searle R C.2009.Footwall rotation in an oceanic core complex quantified using reoriented Integrated Ocean Drilling Program core samples.Earth and Planetary Science Letters, 287(1-2): 217-228.
Müller R D, Gaina C, Roest W R and Hansen D L.2001.A recipe for microcontinent formation.Geology, 29(3): 203-206.
Peron-Pinvidic G and Manatschal G.2010.From microcon-tinents to extensional allochthons: Witnesses of how continents rift and break apart? Petroleum Geoscience, 16(3): 1-9.
Sandwell D T, Müller R D, Smith W H F, Garcia E and Francis R.2014.New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure.Science, 346(6205): 65-67.
Sauter D.2013.Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years.Nature Geoscience, 6(4): 314-320.
Schroeder T, Cheadle M J, Dick H J B, Faul U, Casey J F and Kelemen P B.2007.Non-volcanic seafloor spreading and corner-flow rotation accommodated by extensional faulting at 158°N on the Mid Atlantic Ridge: A structural synthesis of ODP Leg 209.Geochemistry Geophysics Geosystems, 8, Q06015.doi: 10.1029/2006GC001567
Schroeder T and John B E.2004.Strain localization on an oceanic detachment fault system, Atlantis Massif, 30°N, Mid-Atlantic Ridge.Geochemistry Geophysics Geosy?stems, 5, Q11007.doi: 10.1029/2004GC000728
Smith D K, Cann J R and Escartin J.2006.Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge.Nature, 442: 440-443.
Smith D K, Escartin J, Schouten H and Cann J R.2008.Fault rotation and core complex formation: Significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, 13°-25°N).Geochemistry Geophysics Geosystems, 9, Q03003.doi: 10.1029/2007GC001699
Tebbens S F, Cande S C, Kovacs L, Parra J C, LaBrecque J L and Vergara H.1997.The Chile ridge: A tectonic framework.Journal of Geophysical Research: Solid Earth, 102: 12035-12059.
Tucholke B E, Behn M D, Buck W R and Lin J.2008.Role of melt supply in oceanic detachment faulting and formation of megamullions.Geology, 36: 455-458.
Tucholke B E, Humphris S E and Dick H J B.2013.Cemented mounds and hydrothermal sediments on the detachment surface at Kane Megamullion: A new manifestation of hydrothermal venting.Geochemistry Geophysics Geosystems, 14(9): 3352-3378.
Tucholke B E, Lin J and Kleinrock M C.1998.Megamullions and mullion structure defining oceanic metamorphic core complexes on the mid-Atlantic ridge.Journal of Geophysical Research: Solid Earth, 103: 9857-9866.
Whitney D L, Teyssier C, Rey P and Buck WR.2012.Continental and oceanic core complexes.Geological Society of America Bulletin, 125(3-4): 273-298.
Wills S and Buck WR.1997.Stress field rotation and rooted detachment faults: A test of fault initiation models.Journal of Geophysical Research: Solid Earth, 102: 20503-20514.
Witze A.2006.The start of the world as we know it.Nature, 442: 128-131.
Yin A.1990.Origin of regional, rooted low-angle normal faults: A mechanical model and its tectonic implications.Tectonics, 8(3): 469-482.

相似文献/References:

[1]鲁如魁,钟华明,童劲松.西藏洛扎地区拆离断层构造变形特征.大地构造与成矿学,2005.29(2):189.
 LU Rukui,ZHONG Huaming,TONG Jingsong.TECTONIC DEFORMATION FEATURES OF THE DETACHMENT FAULT IN LUOZHA AREA, TIBET.Geotectonica et Metallogenia,2005.43(4):189.
[2]刘德民,李德威.喜马拉雅造山带中段定结地区拆离断层.大地构造与成矿学,2003.27(1):037.
 LIU De min and LI De wei.DETACHMENT FAULT IN DINGJIE AREA MIDDLE PART OF HIMALAYA MOUNTAIN BELT.Geotectonica et Metallogenia,2003.43(4):037.
[3]付伟,周永章,杨志军.藏南多层位金锑含矿建造特征及其控矿因素制约.大地构造与成矿学,2005.29(3):321.
 FU Wei,ZHOU Yongzhang,YANG Zhijun.CHARACTERISTICS OF MULTI-HORIZON ORE-BEARING FORMATIONS IN SOUTHERN TIBET AU-SB METALLOGENIC BELT AND ITS CONTROLLING FACTORS.Geotectonica et Metallogenia,2005.43(4):321.
[4]高金尉,吴时国,彭学超.南海共轭被动大陆边缘洋陆转换带构造特征.大地构造与成矿学,2015.39(4):555.doi:10.16539/j.ddgzyckx.2015.04.001
 GAO Jinwei,WU Shiguo,PENG Xuechao.Structures of Continent-Ocean Transition at the Conjugate Passive Margins of the South China Sea.Geotectonica et Metallogenia,2015.43(4):555.doi:10.16539/j.ddgzyckx.2015.04.001
[5]王余泉,漆家福*,郑荣华.饶阳凹陷中部地区古近纪构造变形及控制因素.大地构造与成矿学,2018.42(4):628.doi:10.16539/j.ddgzyckx.2018.04.003
 WANG Yuquan,QI Jiafu*,ZHENG Ronghua.Paleogene Deformation and its Control Mechanism in the Central Part of Raoyang Sag.Geotectonica et Metallogenia,2018.43(4):628.doi:10.16539/j.ddgzyckx.2018.04.003
[6]李 阳,李三忠,郭玲莉.拆离型微地块: 洋陆转换带和洋中脊变形机制.大地构造与成矿学,2018.优先出版:001.doi:10.16539/j.ddgzyckx.2019.04.011
 LI Yang,LI Sanzhong.Detachment-derived Micro-blocks: New Insights for the Deformation Mechanism of the Ocean-continent Transition and the Mid-ocean Ridge.Geotectonica et Metallogenia,2018.43(4):001.doi:10.16539/j.ddgzyckx.2019.04.011

备注/Memo

备注/Memo:
收稿日期: 2018-08-28; 改回日期: 2018-10-30
项目资助: “全球变化与海气相互作用”专项(GASI-GEOGE-01)、青岛海洋科学与技术国家实验室鳌山科技创新计划项目(2016ASKJ13、2017ASKJ02)、山东省泰山学者特聘教授项目、试采海底孔隙压力监测与海洋物理环境研究(2018c-03-186)、国家重点研发计划项目(2017YFC060140)、国家自然科学基金项目(41802212)和青岛市博士后应用研究项目(861805033092)联合资助。
第一作者简介: 李阳(1987-), 男, 博士, 从事构造地质学研究。Email: liyangxbdx@163.com
通信作者: 李三忠(1968-), 男, 博士, 教授, 博士生导师, 从事构造地质学及海洋地质学教学和研究。Email: sanzhong@ouc.edu.cn
更新日期/Last Update: 2019-08-15