[1]汪 刚,李三忠,姜素华.2019.增生型微地块的成因模式及演化.大地构造与成矿学,43(4):745-761.doi:10.16539/j.ddgzyckx.2019.04.009
 WANG Gang,LI Sanzhong,JIANG Suhua.2019.Formation Mechanisms and Evolution of Accretion-derived Micro-blocks.Geotectonica et Metallogenia,43(4):745-761.doi:10.16539/j.ddgzyckx.2019.04.009
点击复制

增生型微地块的成因模式及演化
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2019年43卷04期
页码:
745-761
栏目:
微板块构造专辑
出版日期:
2019-08-15

文章信息/Info

Title:
Formation Mechanisms and Evolution of Accretion-derived Micro-blocks
文章编号:
1001-1552(2019)04-0745-017
作者:
汪 刚12 李三忠12* 姜素华12 索艳慧12 郭玲莉12 朱俊江12 王鹏程12 刘 博12
1.海底科学与探测技术教育部重点实验室, 中国海洋大学 海洋高等研究院和海洋地球科学学院, 山东 青岛 266100; 2.青岛海洋科学与技术国家实验室 海洋地质过程与环境功能实验室, 山东 青岛 266237
Author(s):
WANG Gang12 LI Sanzhong12* JIANG Suhua12 SUO Yanhui12 GUO Lingli12 ZHU Junjiang12 WANG Pengcheng12 and LIU Bo12
1.Key Lab of Submarine Geosciences and Prospecting Techniques, MOE, Institute for Advanced Ocean Study and College of Marine Geoscience, Ocean University of China, Qingdao 266100, Shandong, China; 2.Laboratory for Marine Geology and Environment, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
关键词:
增生型微地块 增生作用 俯冲作用 三节点 洋底高原
Keywords:
accretion-derived micro-blocks plate accretion subduction triple junction oceanic plateau subduction
分类号:
P542; P67
DOI:
10.16539/j.ddgzyckx.2019.04.009
文献标志码:
A
摘要:
增生型微地块是指在俯冲带消亡过程中大-中型洋壳板块内部较厚洋底高原、大火成岩省、外来微地块增生拼贴到大陆边缘而残留形成的微地块。增生型微地块通常位于板块的汇聚地带, 其成因是由于俯冲板块上的洋壳高原、海山、岛弧或陆壳到达俯冲带后, 因浮力效应增大, 使得该微地块的俯冲作用明显地受到阻碍, 进而拼贴“停靠”到上覆板块上。例如, 西菲律宾海沟的宾汉海隆和马里亚纳海沟北部的小笠原高原, 都对俯冲作用产生了极大的阻碍作用并使其近乎停止, 这两个高原也得以“停靠”就位在上覆板块边缘。位于中美洲的科伊瓦微板块(Coiba microplate), 则由于巴拿马三节点的作用, 逐渐与周缘的科科斯板块、纳兹卡板块分离而独立出来, 并因其西侧右旋转换型边界和南侧左旋转换型边界的俯冲终止, 稳定地“停靠”在中美洲陆缘。总体来说, 增生型微板块的边界肯定有一条边为死亡的或活动的俯冲带, 其他边界可以是转换型、俯冲型、离散型。转换型边界的实例如菲律宾岛弧带和中美洲的科伊瓦微板块等; 俯冲型边界的实例如台湾东部拼贴的北吕宋岛弧; 离散型边界的实例主要分布在东南亚-澳洲板块之间的俯冲系统内, 这一地区发育了一系列弧后盆地, 这些弧后盆地边缘又包含超伸展而裂离的陆壳残块, 这一陆壳性质复杂的区域主要是以弧后盆地的扩张中心(离散型边界)和俯冲带作为边界, 因而弧后盆地的俯冲消亡很可能会形成新的增生型微板块。
Abstract:
The accretion-derived micro-blocks refer to those composed of thick oceanic plateaus, LIPs or allochthonous terranes located in-between tectonic plates/mesoplates, which accreted onto the continental margin of the overriding plate during the convergence along the subduction zone.Therefore, the accretion-derived micro-blocks mostly occur at the convergent margins.Formation of these micro-blocks is mainly triggered by the buoyant oceanic plateaus, volcanic arcs or the splitted continental remnants near trench, which would eventually result in the subduction inhibition or cessation and finally the accretion of micro-blocks onto the overriding plate.For example, the Benham Rise on the western margin of the West Philippine Basin has reached and blocked the Philippine Trench.Moreover, the Ogasawara Plateau on the West Pacific also blocked the Izu-Bonin Trench.Both of them are now docking at the margin of the overriding plate, rejecting subduction down to the mantle.The Coiba microplate in Central America is another typical example.Mostly controlled by the Panama Triple Junction in its West, the Coiba microplate is now relatively independent with its neighbor Cocos and Nazca plates.Depending on the dextral western boundary fault and the sinistral southern boundary fault, the Cobia microplate has successfully stopped its step down to the mantle and docked at the North Panama Trench.In general, as for accretion-derived micro-blocks, one of the boundaries must be a convergent boundary, active or fossil, while the rest can be dominated by transform faults, convergent or divergent boundaries.In accretion-derived microplates such as the Philippine Mobile Belt (PMB) and the Coiba microplate, there are both obvious large transform boundaries like the Philippine Fault and the Panama Fault Zone.But, the North Luzon Arc, which accreted onto the margin of Taiwan, is mainly confined by convergent boundaries.The divergent boundaries often show a spreading center in a back-arc basin, because the spreading center and subduction zone together confine a microplate/block that composed of both seafloor and continental remnants.When the back-arc basins are closing, the continental remnants microplate/block would collide and merge again as an accretion-derived micro-block.

参考文献/References:

耿威.2013.台湾海岸山脉岩石地球化学特征及其构造意义.青岛: 中国科学院海洋研究所博士学位论文.
李三忠, 索艳慧, 刘博, 刘永江, 李玺瑶, 赵淑娟, 朱俊江, 王光增, 张国伟.2018.微板块构造理论: 全球洋内与陆缘微地块研究的启示.地学前缘, 25(5): 324-355.
Balmater H G, Manalo P C, Faustino-Eslava D V, Queano K L, Dimalanta C B, Guotana JMR, Ramos N T, Payot B D and Jr G P Y.2015.Paleomagnetism of the Samar Ophiolite: Implications for the Cretaceous sub-equatorial position of the Philippine island arc.Tectonophysics, 664: 214-224.
Bird P.2003.An updated digital model of plate boundaries.Geochemistry Geophysics Geosystems, 4, 1027.doi: 10.1029/2001GC000252
Biske Y S and Seltmann R.2010.Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan oceans.Gondwana Research, 17(2): 602-613.
Bock Y, Prawirodirdjo L, Genrich J F, Stevens C W, McCaffrey R, Subarya C, Puntodewo S S O and Calais E.2003.Crustal motion in Indonesia from Global Positioning System measurements.Journal of Geophysical Research: Solid Earth, 108(B8), 2367.doi: 10.1029/2001JB000324
Chen W H, Huang C Y, Lin Y J, Zhao Q H, Yan Y, Chen D F, Zhang X C, Lan Q and Yu M M.2015.Depleted deep South China Sea δ13C paleoceanographic events in response to tectonic evolution in Taiwan-Luzon Strait since Middle Miocene.Deep-Sea Research Part II, 122: 195-225.
Coltice N, Gérault M and Ulvrová M.2017.A mantle convection perspective on global tectonics.Earth-Science Reviews, 165: 120-150.
De Boer J Z D, Defant M J, Stewart R H, Restrepo J F, Clark L F and Ramirez A H.1988.Quaternary calc-alkaline volcanism in western Panama: Regional variation and implication for the plate tectonic framework.Journal of South American Earth Sciences, 1(3): 275-293.
DeMets C, Gordon R G and Argus D F.2010.Geologically current plate motions.Geophysical Journal International, 181(1): 1-80.
Dimalanta C B, Ramos E G L, Jr G P Y and Bellon H.2010.New features from the Romblon Island Group: Key to understanding the arc-continent collision in Central Philippines.Tectonophysics, 479(1): 120-129.
Genrich J F, Bock Y, McCaffrey R, Calais E, Stevens C W and Subarya C.1996.Accretion of the southern Banda arc to the Australian plate margin determined by Global Positioning System measurements.Tectonics, 15(2): 288-295.
Godfrey N J, Meltzer A S, Klemperer S L, Trehu A M, Beitner B, Clarke Jr S H and Ondrus A.1998.Evolution of the Gorda Escarpment, San Andreas Fault and Mendocino triple junction from multichannel seismic data collected across the northern Vizcaino block, offshore northern California.Journal of Geophy?sical Research: Solid Earth, 103(B10): 23813-23825.
Guotana J M R, Payot B D, Dimalanta C B, Ramos N T, Faustino-Eslava D V, Quea?o K L and Yumul Jr G P.2017.Arc and backarc geochemical signatures of the proto-Philippine Sea Plate: Insights from the petro?graphy and geochemistry of the Samar Ophiolite volcanic section.Journal of Asian Earth Sciences, 142: 77-92.
Harris R.2011.The nature of the Banda arc-continent collision in the Timor region // Arc-Continent Collision.Berlin Heidelberg: Springer: 163-211.
Holm R J, Rosenbaum G and Richards S W.2016.Post 8 Ma reconstruction of Papua New Guinea and Solomon Islands: Microplate tectonics in a convergent plate boundary setting.Earth-Science Reviews, 156: 66-81.
Huang C Y, Yuan P B, Lin C W, Wang T K and Chang C P.2000.Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica.Tectonophysics, 325(1): 1-21.
Kennan L and Pindell J L.2009.Dextral shear, terrane accretion and basin formation in the Northern Andes: Best explained by interaction with a Pacific-derived Caribbean Plate? Geological Society, London, Special Publications, 328(1): 487-531.
Keppie D F.2014.The Analysis of Diffuse Triple Junction Zones in Plate Tectonics and the Pirate Model of Western Caribbean Tectonics.New York: Springer.
Kerr A C and Tarney J.2005.Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus.Geology, 33(4): 269-272.
Kolarsky R A, Mann P and Montero W.1995.Island arc response to shallow subduction of the Cocos Ridge, Costa Rica // Mann P.Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America.
Korsch R J and Wellman H W.1988.The geological evolution of New Zealand and the New Zealand region // Nairn A E M, Stehli F G and Uyeda S.The Ocean Basins and Margins: The Pacific Ocean.New York: Springer Science+Business Media.
Li S Z, Suo Y H, Li X Y, Liu B, Dai L M, Wang G Z, Zhou J, Li Y, Liu Y M, Cao X Z, Somerville I, Mu D L, Zhao S J, Liu J P, Meng F, Zhen L B, Zhao L T, Zhu J J, Yu S Y, Liu Y J and Zhang G W.2018.Microplate tectonics: New insights from micro-blocks in the global oceans, continental margins and deep mantle.Earth-Science Reviews, 185: 1029-1064.
Lonsdale P.2005.Creation of the Cocos and Nazca plates by fission of the Farallon plate.Tectonophysics, 404(3-4): 237-264.
Lonsdale P and Klitgord K D.1978.Structure and tectonic history of the eastern Panama Basin.Geological Society of America Bulletin, 89(7): 981-999.
MacMillan I, Gans P B and Alvarado G.2004.Middle Miocene to present plate tectonic history of the southern Central American Volcanic Arc.Tectonophysics, 392(1-4): 325-348.
Michel G W, Becker M, Angermann D, Reigber C and Reinhart E.2000.Crustal motion in E-and SE-Asia from GPS measurements.Earth Planets and Space, 52(10): 713-720.
Moore G F and Sender K L.1995.Fracture zone collision along the South Panama margin.Geological Society of America Special Papers: 201-212.
Morell K D, Fisher D M and Gardner T W.2008.Inner forearc response to subduction of the Panama Fracture Zone, southern Central America.Earth and Planetary Science Letters, 265(1): 82-95.
Neal C R, Mahoney J J, Kroenke L W, Duncan R A and Petterson M G.1997.The Ontong Java Plateau // Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism.American Geophysical Union: 183-216.
Nugroho H, Harris R, Lestariya A W and Maruf B.2009.Plate boundary reorganization in the active Banda Arc-continent collision: Insights from new GPS measurements.Tectonophysics, 479(1): 52-65.
Nur A and Ben-Avraham Z.1989.Oceanic plateaus and the Pacific Ocean margins // Ben-Avraham Z.The Evolution of the Pacific Ocean Margins.Oxford: Oxford Press: 7-19.
Pacle N A D, Dimalanta C B, Ramos N T, Payot B D, Faustino-Eslava D V, Queano K L and Jr G P Y.2017.Petrography and geochemistry of Cenozoic sedimentary sequences of the southern Samar Island, Philippines: Clues to the unroofing history of an ancient subduction zone.Journal of Asian Earth Sciences, 142: 3-19.
Pindell J L, Kennan L, Maresch WV, Stanek K-P, Draper G and Higgs R.2005.Plate-kinematics and crustal dynamics of circum-Caribbean arc-continent interactions: Tectonic controls on basin development in Proto-Caribbean margins.Geological Society of America Special Papers, 394: 7-52.
Pubellier M and Meresse F.2013.Phanerozoic growth of Asia: Geodynamic processes and evolution.Journal of Asian Earth Sciences, 72(4): 118-128.
Ranero C R and von Huene R V.2000.Subduction erosion along the Middle America convergent margin.Nature, 404(6779): 748-752.
Rangin C.1991.The Philippine Mobile Belt: A complex plate boundary.Journal of Southeast Asian Earth Sciences, 6(3): 209-220.
Rangin C.2016.Rigid and non-rigid micro-plates: Philippines and Myanmar-Andaman case studies.Comptes Rendus Geoscience, 348(1): 33-41.
Reyners M, Eberhartphillips D, Upton P and Gubbins D.2017.Three-dimensional imaging of impact of a large igneous province with a subduction zone.Earth and Planetary Science Letters, 460: 143-151.
Rocchi S, Bracciali L, Vincenzo G D, Gemelli M and Ghezzo C.2011.Arc accretion to the early Paleozoic Antarctic margin of Gondwana in Victoria Land.Gondwana Research, 19(3): 594-607.
Schellart W P, Freeman J, Stegman D R, Moresi L and May D.2007.Evolution and diversity of subduction zones controlled by slab width.Nature, 446(7133): 308-311.
Sibuet J C and Hsu S K.2004.How was Taiwan created? Tectonophysics, 379(1): 159-181.
Simons W J F, Ambrosius B A C, Noomen R, Angermann D, Wilson P, Becker M, Reinhart E, Walpersdorf A and Vigny C.1999.Observing plate motions in S.E.Asia: Geodetic results of the GEODYSSEA Project.Geophysical Research Letters, 26(14): 2081-2084.
Skulski T and Percival J A.1996.Allochthonous 2.78 Ga oceanic plateau slivers in a 2.72 Ga continental arc sequence: Vizien greenstone belt, northeastern Superior Province, Canada.Lithos, 37: 163-179.
Tamayo R A J.2004.Subduction-related magmatic imprint of most Philippine ophiolites: Implications on the early geodynamic evolution of the Philippine archipelago.Bulletin De La Societe Geologique De France, 175(5): 443-460.
Vallejo C, Winkler W, Spikings R A, Luzieux L, Heller F and Bussy F.2009.Mode and timing of terrane accretion in the forearc of the Andes in Ecuador.Memoir of the Geological Society of America, 204(9): 197-216.
Vannucchi P, Galeotti S, Clift P D, Ranero C R and von Huene R.2004.Long-term subduction-erosion along the Guatemalan margin of the Middle America Trench.Geology, 32(7): 617-620.
Vogt K and Gerya T V.2014.From oceanic plateaus to allochthonous terranes: Numerical modelling.Gondwana Research, 25(2): 494-508.
Wang P C, Li S Z, Guo L L, Jiang S H, Somerville I D, Zhao S J, Zhu B D, Dai L M, Suo Y H and Han B.2016.Mesozoic and Cenozoic accretionary orogenic processes in Borneo and their mechanisms.Geological Journal, 51(S1): 464-489.
Weber M, Gómez-Tapias J, Cardona A, Duarte E, Pardo-Trujillo A and Valencia V A.2015.Geochemistry of the Santa Fé Batholith and Buriticá Tonalite in NW Colombia — Evidence of subduction initiation beneath the Colombian Caribbean Plateau.Journal of South American Earth Sciences, 62: 257-274.
Yumul Jr G P.2007.Westward younging disposition of Philippine ophiolites and its implication for arc evolution.Island Arc, 16(2): 306-317.

相似文献/References:

[1]汪 刚,李三忠,姜素华.增生型微地块的成因模式及演化.大地构造与成矿学,2018.优先出版:745.doi:10.16539/j.ddgzyckx.2019.04.009
 WANG Gang,LI Sanzhong,JIANG Suhua.Formation Mechanisms and Evolution of Accretion-Derived Micro-blocks.Geotectonica et Metallogenia,2018.43(4):745.doi:10.16539/j.ddgzyckx.2019.04.009

备注/Memo

备注/Memo:
收稿日期: 2018-08-28; 改回日期: 2019-03-01
项目资助: 国家自然科学基金重点项目(91858215)、“全球变化与海气相互作用”专项(GASI-GEOGE-01)、山东省-国家自然科学基金联合基金(U1606401)、国家重点研发项目(2016YFC0601002、2017YFC0601401)、中国海洋大学研究生自主科研项目(201861021)、青岛海洋科学与技术国家实验室鳌山科技创新计划项目(2016ASKJ13、2017ASKJ02)、国家自然科学基金杰出青年基金项目(41325009)和山东省泰山学者特聘教授项目、试采海底孔隙压力监测与海洋物理环境研究项目(2018c-03-186)联合资助。
第一作者简介: 汪刚(1994-), 男, 博士研究生, 海洋地质学专业。Email: gwang877@163.com
通信作者: 李三忠(1968-), 男, 教授, 主要从事构造地质学和海洋地质学研究。Email: sanzhong@ouc.edu.cn
更新日期/Last Update: 2019-08-15