[1]甄立冰,李三忠,郭玲莉.2019.延生型微板块成因机制模拟研究进展.大地构造与成矿学,43(4):730-744.doi:10.16539/j.ddgzyckx.2019.04.008
 ZHEN Libing,LI Sanzhong,GUO Lingli.2019.Genetic Mechanism of the Propagation-derived Microplate: A Review.Geotectonica et Metallogenia,43(4):730-744.doi:10.16539/j.ddgzyckx.2019.04.008
点击复制

延生型微板块成因机制模拟研究进展
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2019年43卷04期
页码:
730-744
栏目:
微板块构造专辑
出版日期:
2019-08-15

文章信息/Info

Title:
Genetic Mechanism of the Propagation-derived Microplate: A Review
文章编号:
1001-1552(2019)04-0730-015
作者:
甄立冰12 李三忠12* 郭玲莉12 王光增12 索艳慧12 朱俊江12 李玺瑶12 戴黎明12 刘永江12
1.海底科学与探测技术教育部重点实验室, 中国海洋大学 海洋高等研究院和海洋地球科学学院, 山东 青岛 266100; 2.青岛海洋科学与技术国家实验室 海洋地质过程与环境功能实验室, 山东 青岛 266237
Author(s):
ZHEN Libing12 LI Sanzhong12* GUO Lingli12 WANG Guangzeng12 SUO Yanhui12 ZHU Junjiang12 LI Xiyao12 DAI Liming12 and LIU Yongjiang12
1.Key Lab of Submarine Geosciences and Prospecting Techniques, MOE, Institute for Advanced Ocean Study and College of Marine Geoscience, Ocean University of China, Qingdao 266100, Shandong, China; 2.Laboratory for Marine Geology and Environment, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
关键词:
延生型微板块 成因机制 物理模拟 数值模拟
Keywords:
propagation-derived microplate formation mechanism analogue modeling numerical modeling
分类号:
P542; P67
DOI:
10.16539/j.ddgzyckx.2019.04.008
文献标志码:
A
摘要:
延生型微板块是指海底扩张或大陆裂解过程中, 因裂谷间快速叠接拓展而发生旋转, 捕获老的岩石圈并增生新的岩石圈所形成的一类微板块。影响其形成的动力因素众多, 根据作用位置可分为浅部动力因素和深部动力因素两类。延生型微板块广泛分布于深海大洋, 代表区域为东太平洋海隆处, 但因观测困难, 生长周期长, 数据缺乏, 目前对其成因机制的研究主要有物理模拟和数值模拟两类。物理模拟实验根据实验材料和设备的不同可分为冻蜡模型、离心机模型和胶体模型三种。建立的数值模型从最初简单的二维模型发展到条件更为复杂的三维模型, 同时开始更多的考虑深部地幔对流的影响。但这些研究主要是探索裂谷拓展行为, 仅局限于发现了延生型微板块的形成, 并未形成关于延生型微板块形成和演化的研究体系。本文在前人研究的基础上归纳了延生型微板块形成的影响因素, 系统梳理了相关的构造物理实验和数值模型研究问题, 并结合其他相关研究进一步展望了未来建立延生型微板模型的发展方向。
Abstract:
The propagation-derived microplate refers to a kind of microplate formed by rapid overlapping propagation of rift during seafloor spreading or continental breakup, during which the propagation-derived microplate rotates, captures the old lithosphere, and accelerates the new lithosphere.Many dynamic factors may influence its formation, which can be divided into shallow and deep dynamic factors according to the position of action.Propagation-derived microplate is widely distributed in the deep ocean, and one of the representative areas is the East Pacific Ridge (EPR).However, due to observation difficulty, long growth cycle, lack of data, the current research methods of its genetic mechanism mainly include two types: analog modeling and numerical modeling.According to different experimental materials and equipments, the analogue modeling experiments can be divided into three types: freezing wax model, centrifuge model and colloid model.The established numerical model is developed from the initial simple two-dimensional model to the more complicated three-dimensional model, and more consideration is given to the impact of deep mantle convection.These studies are mainly focused on the propagation behavior of the rift, and did not form a systematic research system for the formation and evolution of the propagation-derived microplate.Based on previous studies, this paper summarizes the influencing factors of propagation-derived microplates, systematically reviews the related physical simulation experiment and numerical model researches, and prospects the future development direction of the propagation-derived microplate model.

参考文献/References:

李三忠, 郭晓玉, 侯方辉, 吕海清, 郝德峰, 刘保华.2004.洋中脊分段性及其拓展和叠接机制.海洋地质动态, 20(11): 19-28.
李三忠, 索艳慧, 刘博, 刘永江, 李玺瑶, 赵淑娟, 朱俊江, 王光增, 张国伟.2018.微板块构造理论: 全球洋内与陆缘微地块研究的启示.地学前缘, 25(5): 330-362.
Acocella V.2008.Transform faults or overlapping spreading centers? Oceanic ridge interactions revealed by analogue models.Earth and Planetary Science Letters, 265(3-4): 379-385.
Allken V, Huismans R S and Thieulot C.2011.Three-dimen-sional numerical modeling of upper crustal extensional systems.Journal of Geophysical Research, 116(B10): 1-15.
Allken V, Huismans R S and Thieulot C.2012.Factors controlling the mode of rift interaction in brittle-ductile coupled systems: A 3D numerical study.Geochemistry Geophysics Geosystems, 13(5).doi: 1029/2012GC004077
Beutel E, van Wijk J, Ebinger C, Keir D and Agostini A.2010.Formation and stability of magmatic segments in the Main Ethiopian and Afar rifts.Earth and Planetary Science Letters, 293(3): 225-235.
Bird P.2003.An updated digital model of plate boundaries.Geochemistry Geophysics Geosystems, 4(3), 1027.doi: 1029/2001GC000252
Bird R T and Naar D F.1994.Intratransform origins of mid-ocean ridge microplates.Geology, 22(11): 987-990.
Bird R T, Tebbens S F, Kleinrock M C and Naar D F.1999.Episodic triple-junction migration by rift propagation and microplates.Geology, 27(10): 911-914.
Blais A, Gente P, Maia M and Naar D F.2002.A history of the Selkirk paleomicroplate.Tectonophysics, 359(1): 157-169.
Bohnenstiehl D R, Howell J K and Hey R N.2008.Distribution of axial lava domes along a superfast overlapping spreading center, 27°-32°S on the East Pacific Rise.Geochemistry Geophysics Geosystems, 9, Q12016.doi: 10.1029/2008GC002158
Brune S, Corti G and Ranalli G.2017.Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression.Tectonics, 36(9): 1767-1786.
Choi E, Lavier L and Gurnis M.2008.Thermomechanics of mid-ocean ridge segmentation.Physics of the Earth and Planetary Interiors, 171(1): 374-386.
De Bremaecker J C and Swenson D V.1990.Origin of overlapping spreading centers: A finite element study.Tectonics, 9(3): 505-519.
DeMets C, Gordon R G and Argus D F.2010.Geologically current plate motions.Geophysical Journal International, 181(1): 1-80.
Dunn R A, Leki? V, Detrick R S and Toomey D R.2005.Three-dimensional seismic structure of the Mid-Atlantic Ridge (35°N): Evidence for focused melt supply and lower crustal dike injection.Journal of Geophysical Research: Solid Earth, 110(B9): 1-17.
Eakins B W and Lonsdale P F.2003.Structural patterns and tectonic history of the Bauer microplate, Eastern Tropical Pacific.Marine Geophysical Researches, 24(3-4): 171-205.
Engeln J F and Stein S.1984.Tectonics of the Easter plate.Earth and Planetary Science Letters, 68(2): 259-270.
Fender M L, Lechenault F and Daniels K E.2010.Universal shapes formed by two interacting cracks.Physical Review Letters, 105(12): 1-4.
Gerya T.2012.Origin and model of oceanic transform faults.Tectonophysics, 522-523(3): 34-54.
Gerya T V.2013.Three-dimensional thermomechanical modeling of oceanic spreading initiation and evolution.Physics of the Earth and Planetary Interiors, 214: 35-52.
Grindley N R and Fox P J.1993.Lithospheric stresses associated with nontransform offsets of the Mid-Atlantic ridge: Implications from a finite element analysis.Tectonics, 12(4): 982-1003.
Herron E M.1972.Two small crustal plates in the South Pacific near Easter Island.Nature, 240(98): 35-37.
Hey R.1977.A new class of ‘‘pseudofaults’’ and their bearing on plate tectonics: A propagating rift model.Earth and Planetary Science Letters, 37(2): 321-325.
Hey R, Baker E, Bohnenstiehl D W, Massoth G, Kleinrock M, Martinez F, Naar D, Pardee D, Lupton J, Feely R, Gharib J, Resing J, Rodrigo C, Sansone F and Walker S.2004.Tectonic/volcanic segmentation and controls on hydrothermal venting along Earth’s fastest seafloor spreading system, EPR 27°-32°S.Geochemistry Geophysics Geosystems, 5, Q12007.doi: 10.1029/ 2004GC000764
Hey R N, Johnson P D, Martinez F, Korenaga J, Somers M L, Huggett Q J, Lebas T P, Rusby R I and Naar D F.1995.Plate boundary reorganization at a large-offset, rapidly propagating rift.Nature, 378(6553): 167-170.
Hey R N, Naar D F, Kleinrock M C, Phipps Morgan W J, Morales E and Schilling J G.1985.Microplate tectonics along a superfast seafloor spreading system near Easter Island.Nature, 317(6035): 320-325.
Hey R N and Wilson D S.1982.Propagating rift explanation for the tectonic evolution of the Northeast Pacific — The pseudomovie.Earth and Planetary Science Letters, 58(2): 167-184.
Hieronymus C F.2004.Control on seafloor spreading geometries by stress-and strain-induced lithospheric weakening.Earth and Planetary Science Letters, 222(1): 177-189.
Katz R F, Ragnarsson R and Bodenschatz E.2005.Tectonic microplates in a wax model of sea-floor spreading.New Journal of Physics, 7(7): 37.
Koehn D, Aanyu K, Haines S and Sachau T.2008.Rift nucleation, rift propagation and the creation of basement micro-plates within active rifts.Tectono?physics, 458(1): 105-116.
Larson R L, Searle R C, Kleinrock M C, Shouoten H, Bird R T, Naar D F, Rusby R I, Hooft E E and Lasthiotakis H.1992.Roller-bearing tectonic evolution of the Juan Fernandez microplate.Nature, 356(6370): 571-576.
Liao J and Gerya T.2015.From continental rifting to sea?oor spreading: Insight from 3D thermo-mechanical modeling.Gondwana Research, 28(4): 1329-1343.
Lonsdale P.1983.Overlapping rift zones at the 5.5°S offset of the East Pacific Rise.Journal of Geophysical Research: Solid Earth, 88(B11): 9393-9406.
Lonsdale P.1985.Nontransform offsets of the Pacific-Cocos plate and their traces on the rise flank.Geological Society of America Bulletin, 96(3): 313-327.
Lonsdale P.1988.Structural pattern of the Galapagos microplate and evolution of the Galapagos triple junctions.Journal of Geophysical Research: Solid Earth, 93(B11): 13551-13574.
Lonsdale P, Blum N and Puchelt H.1992.The RRR triple junction at the southern end of the Pacific-Cocos East Pacific Rise.Earth and Planetary Science Letters, 109(1-2): 73-85.
Macdonald K C and Fox P J.1983.Overlapping spreading centers: A new kind of accretionary geometry on the East Pacific Rise.Nature, 302(5903): 55-58.
Macdonald K C, Sempere J C and Fox P.1984.East Pacific Rise from Siqueiros to Orozco fracture zones: Along-strike continuity of axial neovolcanic zone and structure and evolution of overlapping spreading centers.Journal of Geophysical Research: Solid Earth, 89(B7): 6049-6069.
Mammerickx J and Klitgord K D.1982.Northern East Pacific Rise: Evolution from 25 my BP to the present.Journal of Geophysical Research: Solid Earth, 87(B8): 6751-6760.
Mammerickx J, Naar D F and Tyce R L.1988.The mathematician paleoplate.Journal of Geophysical Research: Solid Earth, 93(B4): 3025-3040.
Matthews K J, Müller R D and Sandwell D T.2016.Oceanic microplate formation records the onset of India-Eurasia collision.Earth and Planetary Science Letters, 433: 204-214.
Morgan J P and Parmentier E M.1985.Causes and rate-limiting mechanisms of ridge propagation: A fracture mechanics model.Journal of Geophysical Research: Solid Earth, 90(B10): 8603-8612.
Müller R D, Sdrolias M, Gaina C and Roest W R.2008.Age, spreading rates, and spreading asymmetry of the world’s ocean crust.Geochemistry Geophysics Geosy?stems, 9.doi: 10.1029/2007GC001743
Neves M C, Bott M H P and Searle R C.2004.Patterns of stress at midocean ridges and their offsets due to seafloor subsidence.Tectonophysics, 386(3): 223-242.
Neves M C, Searle R C and Bott M H P.2003.Easter microplate dynamics.Journal of Geophysical Research: Solid Earth, 108(B4): 1-12.
O’Neill C, Jellinek A M and Lenardic A.2007.Conditions for the onset of plate tectonics on terrestrial planets and moons.Earth and Planetary Science Letters, 261(1): 20-32.
Oldenburg D W and Brune J N.1975.An explanation for the orthogonality of ocean ridges and transform faults.Journal of Geophysical Research, 80(17): 2575-2585.
Püthe C and Gerya T.2014.Dependence of mid-ocean ridge morphology on spreading rate in numerical 3-D models.Gondwana Research, 25(1): 270-283.
Sachau T, Koehn D and Passchier C.2011.Lattice-particle simulation of stress patterns in a Rwenzori-type rift transfer zone.Journal of African Earth Sciences, 61: 286-295.
Sarkar S, Baruah A, Dutta U and Mandal N.2014.Role of random thermal perturbations in the magmatic segmentation of mid-oceanic ridges: Insights from numerical simulations.Tectonophysics, 636: 83-99.
Schouten H, Klitgord K D and Gallo D G.1993.Edge-driven microplate kinematics.Journal of Geophysical Research, 98(B4): 6689-6701.
Schwaab M E, Biben T, Santucci S, Gravouil A and Vanel L.2018.Interacting cracks obey a multiscale attractive to repulsive transition.Physical Review Letters, 120(25): 1-5.
Sempere J C and Macdonald K C.1986.Overlapping spreading centers: Implications from crack growth simulation by the displacement discontinuity method.Tectonics, 5(1): 151-163.
Shouten H and White R S.1980.Zero offset fracture zones.Geology, 8(8): 175-179.
Sibrant A L R, Mittelstaedt E, Davaille A, Pauchard L, Aubertin A, Auffray L and Pidoux R.2018.Accretion mode of oceanic ridges governed by axial mechanical strength.Nature Geoscience, 11: 274-279.
Smith D K, Schouten H, Montesi L and Zhu W L.2013.The recent history of the Galapagos triple junction preserved on the Pacific plate.Earth and Planetary Science Letters, 371: 6-15.
Smith D K, Schouten H, Zhu W L, Montési L G J and Cann J R.2011.Distributed deformation ahead of the Cocos-Nazca Rift at the Galapagos triple junction.Geochemistry Geophysics Geosystems, 12, Q11003.doi: 10.1029/2011GC003689
Stoddard P R and Stein S.1988.A kinematic model of ridge-transform geometry evolution.Marine Geophysical Researches, 10(3-4): 181-190.
Swanson-Hysell N L, Maloof A C, Evans D A D and Weiss B P.2009.No asymmetry in geomagnetic reversals recorded by 1.1-billion-year-old Keweenawan basalts.Nature Geoscience, 2(10): 713-717.
Tebbens S F and Cande S C.1997.Southeast Pacific tectonic evolution from Early Oligocene to present.Journal of Geophysical Research: Solid Earth, 102(B6): 12061-12084.
Tebbens S F, Cande S C, Kovacs L, Parra J C, LaBrecque J L and Vergara H.1997.The Chile ridge: A tectonic framework.Journal of Geophysical Research: Solid Earth, 102(B6): 12035-12059.
Tentler T.2003a.Analogue modeling of tension fracture pattern in relation to midocean ridge propagation.Geophysical Research Letters, 30(6): 225-242.
Tentler T.2003b.Analogue modeling of overlapping spreading centers: Insights into their propagation and coalescence.Tectonophysics, 376(1): 99-115.
Tentler T.2007.Focused and diffuse extension in controls of ocean ridge segmentation in analogue models.Tectonics, 26(5): 1-11.
Tentler T and Acocella V.2010.How does the initial configuration of oceanic ridge segments affect their interaction? Insights from analogue models.Journal of Geophysical Research: Solid Earth, 115(B1): 1-16.

相似文献/References:

[1]于福生,李国志,杨光达.准噶尔盆地南缘褶皱-冲断带变形特征及成因机制模拟.大地构造与成矿学,2009.33(3):386.
 YU Fusheng,LI Guozhi,YANG Guangda.Deformation Feature and Genesis Simulation of FoldandThrust Belts in the Southern Margin, Junggar Basin.Geotectonica et Metallogenia,2009.43(4):386.
[2]徐扬,王存智,程万强.南大巴前陆冲断带构造变形几何类型、分布特征及其成因分析.大地构造与成矿学,2009.33(4):497.
 XU Yang,WANG Cunzhi,CHENG Wanqiang and YANG Kunguang.Geometrical Types, Distribution Characteristics and Genetic Mechanism of Structural Deformation in Southern Dabashan Foreland FoldThrust Belt,Central China.Geotectonica et Metallogenia,2009.43(4):497.
[3]胡望水,李涛,于水.西非被动大陆边缘重力滑脱构造发育演化及成因机制.大地构造与成矿学,2012.36(2):186.
 HU Wangshui,LI Tao,YU Shui.Tectonic Revolution and Forming Mechanism of Gravitational Dcollement Structures in the Passive Continental Margin of West Africa.Geotectonica et Metallogenia,2012.43(4):186.
[4]刘 寅,陈清华,胡 凯.渤海湾盆地与苏北-南黄海盆地构造特征和成因对比.大地构造与成矿学,2014.38(1):038.
 LIU Yin,CHEN Qinghua,HU Kai.Comparison of the Bohai Bay Basin and Subei-South Yellow Sea Basin in the Structural Characteristics and Forming Mechanism.Geotectonica et Metallogenia,2014.43(4):038.
[5]郭颖,汤良杰*,余腾孝.塔里木盆地塘古巴斯坳陷玛东构造带断裂特征及成因探讨.大地构造与成矿学,2016.4(4):643.doi:10.16539/j.ddgzyckx.2016.04.002
 GUO Ying,TANG Liangjie*,YU Tengxiao.Fault Features and Formation Mechanism of Madong Structural Belt in Tanggubasi Depression, Tarim Basin.Geotectonica et Metallogenia,2016.43(4):643.doi:10.16539/j.ddgzyckx.2016.04.002
[6]胡俊良,徐德明,张 鲲.湖南七宝山铜多金属矿床石英斑岩时代与成因: 锆石U-Pb定年及Hf同位素与稀土元素证据.大地构造与成矿学,2016.4(6):1185.doi:10.16539/j.ddgzyckx.2016.06.007
 HU Junliang,XU Deming,ZHANG Kun and LIU Jinsong.Zircon U-Pb Dating, Hf Isotope and REE Geochemistry of the Quartz-porphyry in the Qibaoshan Cu-polymetallic Deposit in Hunan.Geotectonica et Metallogenia,2016.43(4):1185.doi:10.16539/j.ddgzyckx.2016.06.007
[7]李理,王晶.冀中坳陷衡水–无极构造变换带的特征及其成因机制.大地构造与成矿学,2017.41(1):069.doi:10.16539/j.ddgzyckx.2017.01.006
 LI Li and WANG Jing.Characteristics and Mechanism of Hengshui?Wuji Transfer Zone in Jizhong Depression.Geotectonica et Metallogenia,2017.43(4):069.doi:10.16539/j.ddgzyckx.2017.01.006
[8]王晓先,张进江,杨雄英.藏南吉隆淡色花岗岩地球化学特征、 成因机制及其构造动力学意义.大地构造与成矿学,2017.41(2):354.doi:10.16539/j.ddgzyckx.2017.02.011
 WANG Xiaoxian,ZHANG Jinjiang and YANG Xiongying.Geochemical Characteristics of the Leucogranites from Gyirong, South Tibet: Formation Mechanism and Tectonic Implications.Geotectonica et Metallogenia,2017.43(4):354.doi:10.16539/j.ddgzyckx.2017.02.011
[9]熊连桥,于福生,姚根顺.后撤式逆冲推覆断层成因机制及物理模拟——以准噶尔盆地西北缘克-百断裂带为例.大地构造与成矿学,2017.41(6):1011.doi:10.16539/j.ddgzyckx.2017.06.002
 XIONG Lianqiao,YU Fusheng,YAO Genshun.Genesis and Physical Modeling of Backward Propagation Thrust Fault: A Case Study of Ke-Bai Fault Belt in the Northwestern Margin, Junggar Basin.Geotectonica et Metallogenia,2017.43(4):1011.doi:10.16539/j.ddgzyckx.2017.06.002
[10]刘卫彬,张世奇,徐兴友.东濮凹陷沙三段致密砂岩储层裂缝形成机制及对储层物性的影响.大地构造与成矿学,2019.43(1):058.doi:10.16539/j.ddgzyckx.2019.01.005
 LIU Weibin,ZHANG Shiqi,XU Xingyou.Fracturing and its Influence on the Compact Sandstone Reservoir in the Third Member of the Shahejie Formation in the Northern Dongpu Depression.Geotectonica et Metallogenia,2019.43(4):058.doi:10.16539/j.ddgzyckx.2019.01.005
[11]甄立冰,李三忠,郭玲莉.延生型微板块成因机制模拟研究进展.大地构造与成矿学,2018.优先出版:730.doi:10.16539/j.ddgzyckx.2019.04.008
 ZHEN Libing,LI Sanzhong,GUO Lingli.A Review of the Research Progress on the Genetic Mechanism of the Propagation-derived Microplate.Geotectonica et Metallogenia,2018.43(4):730.doi:10.16539/j.ddgzyckx.2019.04.008

备注/Memo

备注/Memo:
收稿日期: 2018-08-30; 改回日期: 2019-03-25
项目资助: “全球变化与海气相互作用”专项(GASI-GEOGE-01)、山东省-国家自然科学基金联合基金(U1606401)、国家重点研发项目(2016YFC0601002、2017YFC0601401)和试采海底孔隙压力监测与海洋物理环境研究(2018c-03-186)联合资助。
第一作者简介: 甄立冰(1994-), 女, 硕士研究生, 地质学专业。Email: zlb@stu.ouc.edu.cn
通信作者: 李三忠(1968-), 男, 教授, 从事构造地质学和海洋地质学研究。Email: sanzhong@ouc.edu.cn
更新日期/Last Update: 2019-08-15