[1]牟墩玲,李三忠,索艳慧.2019.裂生微地块构造特征及成因模式: 来自西太平洋弧后扩张作用的启示.大地构造与成矿学,43(4):665-677.doi:10.16539/j.ddgzyckx.2019.04.004
 MU Dunling,LI Sanzhong,SUO Yanhui.2019.Tectonic and Geodynamic Mechanism of Back-arc-rifting Derived Micro-blocks: Insights from Back-arc Spreading in the West Pacific.Geotectonica et Metallogenia,43(4):665-677.doi:10.16539/j.ddgzyckx.2019.04.004
点击复制

裂生微地块构造特征及成因模式: 来自西太平洋弧后扩张作用的启示
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2019年43卷04期
页码:
665-677
栏目:
微板块构造专辑
出版日期:
2019-08-15

文章信息/Info

Title:
Tectonic and Geodynamic Mechanism of Back-arc-rifting Derived Micro-blocks: Insights from Back-arc Spreading in the West Pacific
文章编号:
1001-1552(2019)04-0665-013
作者:
牟墩玲12 李三忠12* 索艳慧12 朱俊江12 李玺瑶12 王光增12 郭玲莉12 刘永江12 刘 博12
1.海底科学与探测技术教育部重点实验室, 中国海洋大学 海洋高等研究院和海洋地球科学学院, 山东 青岛 266100; 2.青岛海洋科学与技术国家实验室 海洋地质过程与环境功能实验室, 山东 青岛 266237
Author(s):
MU Dunling12 LI Sanzhong12* SUO Yanhui12 ZHU Junjiang12 LI Xiyao12 WANG Guangzeng12 GUO Lingli12 LIU Yongjiang12 and LIU Bo12
1.Key Lab of Submarine Geosciences and Prospecting Technique, MOE, Institute for Advanced Ocean Study and College of Marine Geosciences, Ocean University of China, Qingdao 266100, Shandong, China; 2.Laboratory for Marine Geology and Environment, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
关键词:
微地块 弧后扩张 弧后盆地 裂解 西太平洋 俯冲系统
Keywords:
micro-block back-arc spreading back-arc basin rifting West Pacific subduction system
分类号:
P54; P67
DOI:
10.16539/j.ddgzyckx.2019.04.004
文献标志码:
A
摘要:
微地块是一种在现今空间尺度上相对微小的地质块体, 在裂谷系统、被动陆缘、大洋中脊、深海洋盆、俯冲系统和碰撞环境中均有分布。微地块有多种成因类型, 其中, 由裂谷系统、被动陆缘、弧后扩张作用导致陆块或岛弧发生裂解过程中所生成的新地块或板块, 为裂生微地块(rifting-derived micro-block)。本文主要结合西太平洋“沟-弧-盆”体系中弧后扩张形成的马里亚纳微地块、马努斯微地块以及北斐济海盆内部的微地块特征, 初步总结了裂生微地块的识别标志、运动学特征以及动力学机制。裂生微地块的地壳属性可以是陆壳或洋壳、陆缘弧或洋内弧地壳, 其边界必有一侧为离散型边界, 其余边界可复杂多样, 如俯冲带、转换断层、深大断裂等, 可以是已经死亡的构造, 也可以是正在活动的构造。裂生微地块常见于伸展裂解系统、俯冲消减系统中, 西太平洋的板缘裂生微地块是在弧后伸展裂解的构造背景下形成的, 随着弧后扩张作用的发育而生长演化。基于前人研究, 裂生微地块的成因模式可总结为两类: 与深部地幔上涌相关的主动裂解型, 如板片窗模式、地幔柱模式; 与岩石圈拉伸、海沟后撤相关的被动裂解型。裂生微地块的演化往往是多种裂解机制下综合作用的产物, 常常伴随着不对称、不稳定的弧后扩张过程以及相对于周缘微地块/板块的旋转, 这些都导致了裂生微地块构造演化的独特性和复杂性。对裂生微地块的研究, 使得洋-陆俯冲带、造山带的研究将更加精细化, 同时也可以丰富地块/板块发展演化的内涵。
Abstract:
Micro-blocks are small geological blocks on the present spatial scale, which are mostly distributed in rift system, passive continental margin, mid-ocean ridge, oceanic basin, subduction system or collision system.There are different types of micro-blocks, and one of them is formed by rifting or splitting of island arcs and breakup of continental blocks which was previously termed as back-arc-rifting derived micro-block.This paper preliminarily summarized its identification markers, kinematic characteristics and dynamic mechanism on the bases of the characteristics of micro-blocks located in the West Pacific “trench-arc-basin” system.Its crust can be continental or oceanic, continental margin arc or intra-oceanic arc with complex and diverse boundaries that include subduction zones, transition faults, and deep faults.However, at least one of them should belong to divergent boundary, such as rifts or spreading centers.The back-arc-rifting derived micro-blocks are generated in extensional system and subduction system.The geodynamic models could be divided into two types based on previous studies.One is called active spreading pattern related to the upwelling of the deep mantle, such as slab window and mantle plum mechanisms; and the other is called passive spreading pattern related to lithosphere extension and trench retreat.Back-arc-rifting derived micro-blocks are commonly related to several rifting mechanisms, and accompanied by asymmetrical unstable spreading, boundary jump and rotation movement.Besides, all of them result in the uniqueness and complexity of micro-blocks.The study of back-arc-rifting derived micro-blocks could refine studies of oceanic-continental subduction and orogeny, and enrich the connotation of the blocks/plates tectonics as well.

参考文献/References:

崔华伟, 万永革.2015.新不列颠地震震源区构造应力场的初步结果.国际地震动态, (9): 35.
崔华伟, 万永革, 黄骥超, 李祥, 高熹微, 闰睿.2017.2015年3月新不列颠Ms7.4地震震源及邻区构造应力场特征.地球物理学报, 60(3): 985-998.
李三忠, 吕海青, 侯方辉, 郭晓玉, 金宠, 刘保华.2004.板块三节点.海洋地质前沿, 20(11): 29-39.
李三忠, 索艳慧, 刘博, 刘永江, 李玺瑶, 赵淑娟, 朱俊江, 王光增, 张国伟.2018.微板块构造理论: 全球洋内与陆缘微地块研究的启示.地学前缘, 25(5): 324-355.
李巍然, 王永吉.1997.冲绳海槽火山岩岩石化学特征及其地质意义.岩石学报, 13(4): 1703-1712.
梁瑞才, 王述功.2001.冲绳海槽中段地球物理场及对其新生洋壳的认识.海洋地质与第四纪地质, 21(1): 57-64.
梁瑞才, 吴金龙, 刘保华, 王勇.2001.冲绳海槽中段线性磁条带异常及其构造发育.海洋学报, 23(2): 69-78.
任建业, 李思田.2000.西太平洋边缘海盆地的扩张过程和动力学背景.地学前缘, 7(3): 203-213.
石学法, 鄢全树.2013.西太平洋典型边缘海盆的岩浆活动.地球科学进展, 28(7): 737-750.
吴自银, 王小波, 金翔龙, 李家彪, 高金耀.2004.冲绳海槽弧后扩张证据及关键问题探讨.海洋地质与第四纪地质, 24(3): 67-76.
鄢全树, 石学法, 李乃胜.2010.西南太平洋劳海盆地质学研究进展.海洋地质与第四纪地质, 30(1): 131-140.
Auzende J M, Gràcia-Mont E, Bendel V, Huchon P, Lafoy Y and Lagabrielle Y.1994.A possible triple junction at 14°50′S on the north Fiji basin ridge (Southwest Pacific)? Marine Geology, 116(1-2): 25-35.
Bird P.2003.An updated digital model of plate boundaries.Geochemistry Geophysics Geosystems, 4(3), 1027.doi: 10.1029/2001GC000252
Bonnardot M A, Regnier M, Christova C, Ruellan E and Tric E.2009.Seismological evidence for a slab detachment in the Tonga subduction zone.Tectonophysics, 464: 84-99.
Brudzinski M R and Chen W P.2003.A petrologic anomaly accompanying outboard earthquakes beneath Fiji-Tonga: Corresponding evidence from broadband P and S waveforms.Geophysical Research Letters, 30(13): 15-11.
Chase C G.1978.Plate kinematics: The Americas, East Africa, and the rest of the world.Earth and Planetary Science Letters, 37(3): 355-368.
Chatelain J L, Guillier B and Gratier J P.1993.Unfolding the subducting plate in the central New Hebrides Island Arc: Geometrical argument for detachment of part of the downgoing slab.Geophysical Research Letters, 20(8): 655-658.
Deschamps A and Fujiwara T.2013.Asymmetric accretion along the slow-spreading Mariana Ridge.Geochemistry Geophysics Geosystems, 4(10), 8622.doi: 10.1029/ 2003GC000537
Engeln J F and Stein S.1984.Tectonics of the Easter plate.Earth and Planetary Science Letters, 68(2): 259-270.
Faccenna C, Becker T W, Lallemand S, Lagabrielle Y, Funiciello F and Piromalli C.2010.Subduction/triggered magmatic pulses: A new class of plumes? Earth and Planetary Science Letters, 299: 54-68.
Flower M F J, Russo R M, Tamaki K and Hoang N.2001.Mantle contamination and the Izu-Bonin-Mariana (IBM) ‘high-tide mark’: Evidence for mantle extrusion caused by Tethyan closure.Tectonophysics, 333(1-2): 9-34.
Flower M F J, Tamaki K and Hoang N.1998.Mantle extrusion: A model for dispersed volcanism and Dupal-like asthenosphere in East Asia and the western Pacific // Mantle Dynamics and Plate Interactions in East Asia.American Geophysical Union: 67-88.
Franz L and Romer R L.2010.Different styles of metasomatic veining in ultramafic xenoliths from the Tubaf seamount (Bismarck Microplate, Papua New Guinea).Lithos, 114: 30-53.
Funiciello F, Moroni M, Piromallo C, Faccenna C, Cenedese A and Bui H A.2006.Mapping mantle flow during retreating subduction: Laboratory models analyzed by feature tracking.Journal of Geophysical Research: Solid Earth, 111(B3).doi: 10.1029/2005JB003792
Harrison C G A.2016.The present-day number of tectonic plates.Earth Planets and Space, 68(1): 37.
Heidbach O, Tingay M, Barth A , Reinecker J, Kurfe? D and Müller B.2010.Global crustal stress pattern based on the World Stress Map database release 2008.Tectonophysics, 482(1): 3-15.
Herron E M.1972.Two small crustal plates in the South Pacific near Easter Island.Nature, 240: 35-37.
Hey R N.2004.Propagating rifts and microplates at mid-ocean ridges // Selley R C, Cocks R and Plimer I.Encyclopedia of Geology.London: Academic Press: 396-405.
Holm R J, Rosenbaumc G and Richards S W.2016.Post 8 Ma reconstruction of Papua New Guinea and Solomon Islands: Microplate tectonics in a convergent plate boundary setting.Earth-Science Reviews, 156: 66-81.
Hussong D M and Fryer P.1982.Structure and tectonics of the Mariana arc and fore-arc drillsite selection surveys (DSDP, Leg 60).doi: 10.2973/dsdp.proc.60.102.1982
Johnson T and Molnar P.1972.Focal mechanisms and plate tectonics of the southwest Pacific.Journal of Geophysical Research, 77(826): 5000-5032.
Karig D E.1971.Origin and development of marginal basins in the western Pacific.Journal of Geophysical Research, 76(11): 2542-2561.
Karig D E.1974.Evolution of arc systems in the western Pacific.Annual Review of Earth and Planetary Sciences, 2(2): 51-75.
Kneller E A and Van K P E.2008.The effects of three-dimensional slab geometry on deformation in the mantle wedge: Implications for shear wave anisotropy.Geochemistry Geophysics Geosystems, 9(1), Q01003.doi: 10.1029/2007GC001677
Kong X C, Li S Z, Wang Y M, Suo Y H, Dai L M, Géli L, Zhang Y, Guo L L and Wang P C.2018.Causes of earthquake spatial distribution beneath the Izu-Bonin-Mariana arc.Journal of Asian Earth Sciences, 151: 90-100.
Lagabrielle Y, Goslin J, Martin H, Thirot J L and Auzende J M.1997.Multiple active spreading centers in the hot North Fiji Basin (Southwest Pacific): A possible model for Archaean seafloor dynamics? Earth and Planetary Science Letters, 149: 1-13.
Le Pichon X.1968.Sea-floor spreading and continental drift.Journal of Geophysical Research, 73: 3661-3697.
Lee S M and Ruellan E.2006.Tectonic and magmatic evolution of the Bismarck Sea, Papua New Guinea: Review and new synthesis // Chirstie D M, Fisher C R, Lee S M and Givens S.Back-Arc Spreading Systems, Geological, Biological, Chemical, and Physical Intera?ctions.American Geophysical Union, 166: 263-286.
Liu B, Li S Z, Suo Y H, Dai L M, Somerville I D, Guo L L, Zhao S J and Yu S.2016.The geological nature and geodynamics of the Okinawa Trough, Western Pacific.Geological Journal, 51(S1): 416-428.
Martin A K.2013.Double-saloon-door tectonics in the North Fiji Basin.Earth and Planetary Science Letters, 374: 191-203.
Martin A K.2014.Concave slab out board of the Tonga subduction zone caused by opposite toroidal flows under the North Fiji Basin.Tectonophysics, 622: 56-61.
Martinez F, Fryer P and Becker N.2000.Geophysical characteristics of the southern Mariana Trough, 11°50′N-13°40′N.Journal of Geophysical Research: Solid Earth, 105(B7): 16591-16607.
Martinez F and Taylor B.1996.Back-arc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin.Marine Geophysical Researches, 18(2-4): 203-224.
Maruyama S.1997.Pacific-type orogeny revisited: Miyashiro-type orogeny proposed.The Island Arc, 6(1): 91-120.
Miyashiro A.1986.Hot regions and the origin of marginal basins in the western Pacific.Tectonophysics, 122: 195-216.
Morgan W J.1971.Plate motions and deep mantle convection // Shagam R, Hargraves R B, Morgan W J, Van Houten F B, Burk C A, Holland H D and Hollister L C. Studies in Earth and Space Sciences Hess.Geological Society of America Memoir, 132: 7-22.
Mori J.1989.The New Ireland earthquake of July 3, 1985 and associated seismicity near the Pacific Solomon Sea-Bismarck Sea triple junction.Physics of the Earth and Planetary Interiors, 55(1-2): 144-153.
Müller D, Matthews K J and Sandwell D T.2017.Advances in imaging small-scale seafloor and sub-seafloor tectonic fabric using satellite altimetry // Satellite Altimetry over Oceans and Land Surfaces: 523-546.doi: 10.1201/9781315151779-16
Okal E A and Kirby S H.1998.Deep earthquakes beneath the Fiji Basin, SW Pacific: Earth’s most intense deep seismicity in stagnant slabs.Physics of the Earth and Planetary Interiors, 109: 25-63.
Park J O, Tokuyama H, Shinohara M, Suyehiro K and Taira A.1998.Seismic record of tectonic evolution and back arc rifting in the southern Ryukyu island arc system.Tectonophysics, 294(1-2): 21-42.
Park S H, Lee S M, Kamenov G D, Kwon S T and Lee K Y.2010.Tracing the origin of subduction components beneath the South East Rift in the Manus basin, Papua New Guinea.Chemical Geology, 269(3-4): 339-349.
Richards S, Holm R and Barber G.2011.When slabs collide: A tectonic assessment of deep earthquakes in the Tonga-Vanuatu region.Geology, 39: 787-790.
Schellart W P.2008.Kinematics and flow patterns in deep mantle and upper mantle subduction models: Influence of the mantle depth and slab to mantle viscosity ratio.Geochemstry Geophysics Geosystems, 9(3).doi: 10.1029/ 2007GC001656
Schellart W P, Lister G S and Jessell M W.2002.Analogue modeling of arc and back arc deformation in the New Hebrides arc and North Fiji Basin.Geology, 30: 311-314.
Schellart W P and Moresi L.2013.A new driving mechanism for back arc extension and back arc shortening through slab sinking induced toroidal and poloidal mantle flow: Results from dynamic subduction models with an overriding plate.Journal of Geophysical Research: Solid Earth, 118: 3221-3248.
Sdrolias M, Roest W R and Müller R D.2004.An expression of Philippine Sea plate rotation: The Parece Vela and Shikoku Basins.Tectonophysics, 394: 69-86.
Shinjo R, Chung S L, Kato Y and Kimura M.1999.Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa trough and Ryukyu arc: Implications for the evolution of a young, intracontinental back arc basin.Journal of Geophysical Research: Solid Earth, 104(B5): 10591-10608.
Sibuet J C, Deffontaines B, Hsu S K, Thareau N, Formal J P L and Liu C S.1998.Okinawa trough backarc basin: Early tectonic and magmatic evolution.Journal of Geophysical Research: Solid Earth, 103(B12): 30245-30267.
Sibuet J C, Letouzey J, Barbier F, Charvet J, Foucher J P, Hilde T W C, Kimura M, Chiao L Y, Marsset B, Muller C and Stephan J F.1987.Back arc extension in the Okinawa Trough.Journal of Geophysical Research, 92(B13): 14041-14063.
Soustelle V, Tommasi A, Demouchy S and Franz L.2013.Melt-rock interactions, deformation, hydration and seismic properties in the sub-arc lithospheric mantle inferred from xenoliths from seamounts near Lihir, Papua New Guinea.Tectonophysics, 608: 330-345.
Tamaki K.1995.Upper mantle extrusion tectonics of Southeast Asia and formation of the western Pacific back-arc basins.Workshop: Cenozoic Evolution of the Indochina Peninsula, Hanoi/Do Son, Abstract with Program, 89.
Tamaki K and Honza.1991.Review of global marginal basins.Episodes, 14(3): 224-230.
Taylor B.1979.Bismarck sea: Evolution of a back-arc basin.Geology, 7(4): 171-174.
Tregoning P, Jackson R J, McQueen H, Lambeck K, Stevens C, Little R P, Curley R and Rosa R.1999.Motion of the South Bismarck plate, Papua New Guinea.Geophysical Research Letters, 26(23): 3517-3520.
Tregoning P, Lambeck K, Stolz A, Morgan P, McClusky S C, Van Der Beek P, McQueen H, Jackson R J, Little R P, Laing A and Murphy B.1998.Estimation of current plate motions in Papua New Guinea from Global Positioning System observations.Journal of Geophysical Research: Solid Earth, 1031(B6): 12181-12204.doi: 10.1029/97JB03676
Uyeda S and Kanamori H.1979.Backarc opening and the mode of subduction.Journal of Geophysical Research, 84: 1049-1061.
Wallace L M, Stevens C, Silver E, McCaffrey R, Loratung W, Hasiata S, Stanaway R, Curley R, Rosa R and Taugaloidi J.2004.GPS and seismological constraints on active tectonics and arc-continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone.Journal of Geophysical Research: Solid Earth, 109(B5).doi: 10.1029/2003JB002481
Weiler P D and Coe R S.2000.Rotations in the actively colliding Finisterre Arc Terrane: Paleomagnetic constraints on Plio-Pleistocene evolution of the South Bismarck microplate, northeastern Papua New Guinea.Tectonophysics, 316: 297-325.
Weissel J K, Reading H G and Stegena L.1981.Magnetic lineations in marginal basins of the western pacific [and discussion].Philosophical Transactions of the Royal Society B Biological Sciences, 300(1454): 246-247.
Xu J Y, Ben-Avraham Z, Kelty T and Yu H S.2014.Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions.Earth-Science Reviews, 130(3): 154-196.
Yamazaki T, Seama N, Okino K, Kitada K, Joshima M and Oda H.2003.Spreading process of the northern Mariana trough: Rifting-spreading transition at 22°N.Geochemistry Geophysics Geosystems, 4(9): 1075, doi: 10.1029/2002GC000492
Yan Q S and Shi X F.2014.Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: A review.Acta Oceanologica Sinica, 33(4): 1-12.
Zoback M L.1992.First-and second-order patterns of stress in the lithosphere: The world stress map project.Journal of Geophysical Research: Solid Earth, 97(B8): 11703-11728.

相似文献/References:

[1]赵林涛,李三忠,索艳慧.延生微地块: 洋脊增生系统的复杂过程.大地构造与成矿学,2018.优先出版:715.doi:10.16539/j.ddgzyckx.2019.04.007
 ZHAO Lintao,LI Sanzhong,SUO Yanhui.Propagation-derived Micro-blocks: Complex Evolution of Mid-ocean Ridge Accretion System.Geotectonica et Metallogenia,2018.43(4):715.doi:10.16539/j.ddgzyckx.2019.04.007
[2]周 洁,李三忠,索艳慧.碰生型微地块的分类及其形成机制.大地构造与成矿学,2018.优先出版:795.doi:10.16539/j.ddgzyckx.2019.04.012
 ZHOU Jie,LI Sanzhong,SUO Yanhui.Type and Genetic Mechanism of Collision-derived Micro-blocks.Geotectonica et Metallogenia,2018.43(4):795.doi:10.16539/j.ddgzyckx.2019.04.012
[3]赵林涛,李三忠,索艳慧.延生微地块: 洋脊增生系统的复杂过程.大地构造与成矿学,2019.43(4):715.doi:10.16539/j.ddgzyckx.2019.04.007
 ZHAO Lintao,LI Sanzhong,SUO Yanhui.Propagation-derived Micro-blocks: Complex Evolution of Mid-ocean Ridge Accretion System.Geotectonica et Metallogenia,2019.43(4):715.doi:10.16539/j.ddgzyckx.2019.04.007
[4]周 洁,李三忠,索艳慧.碰生型微地块的分类及其形成机制.大地构造与成矿学,2019.43(4):795.doi:10.16539/j.ddgzyckx.2019.04.012
 ZHOU Jie,LI Sanzhong,SUO Yanhui.Type and Genetic Mechanism of Collision-derived Micro-blocks.Geotectonica et Metallogenia,2019.43(4):795.doi:10.16539/j.ddgzyckx.2019.04.012
[5]牟墩玲,李三忠,索艳慧.裂生微地块构造特征及成因模式: 来自西太平洋弧后扩张作用的启示.大地构造与成矿学,2018.优先出版:665.doi:10.16539/j.ddgzyckx.2019.04.004
 MU Dunling,LI Sanzhong,SUO Yanhui.Tectonic and Geodynamic Mechanism of Back-arc-rifting Derived Micro-blocks: Insights from Back-arc Spreading in the West Pacific.Geotectonica et Metallogenia,2018.43(4):665.doi:10.16539/j.ddgzyckx.2019.04.004

备注/Memo

备注/Memo:
收稿日期: 2018-08-28; 改回日期: 2018-11-28
项目资助: “全球变化与海气相互作用”专项(GASI-GEOGE-01)、青岛海洋科学与技术国家实验室鳌山科技创新计划项目(2016ASKJ13、2017ASKJ02)和山东省泰山学者特聘教授项目试采海底孔隙压力监测与海洋物理环境研究(2018c-03-186)联合资助。
第一作者简介: 牟墩玲(1991-), 女, 博士研究生, 海洋地质专业。Email: 17505324322@163.com
通信作者: 李三忠(1968-), 男, 教授, 博士生导师, 从事构造地质与海洋地质研究。Email: sanzhong@ouc.edu.cn
更新日期/Last Update: 2019-08-15