[1]李增华,池国祥,邓 腾,等.活化断层对加拿大阿萨巴斯卡盆地不整合型铀矿的控制[J].大地构造与成矿学,2019,(43卷03):518-527.[doi:10.16539/j.ddgzyckx.2019.03.008]
 LI Zenghua,CHI Guoxiang,DENG Teng and XU Deru.Controls of Reactivated Faults on the Unconformity-related Uranium Deposits in the Athabasca Basin, Canada[J].Geotectonica et Metallogenia,2019,(43卷03):518-527.[doi:10.16539/j.ddgzyckx.2019.03.008]
点击复制

活化断层对加拿大阿萨巴斯卡盆地不整合型铀矿的控制
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2019年43卷03期
页码:
518-527
栏目:
中国大陆(燕山期)构造成矿作用专辑
出版日期:
2019-06-25

文章信息/Info

Title:
Controls of Reactivated Faults on the Unconformity-related Uranium Deposits in the Athabasca Basin, Canada
文章编号:
1001-1552(2019)03-0518-010
作者:
李增华123 池国祥3* 邓 腾124 许德如124
1.东华理工大学 核资源与环境国家重点实验室, 江西 南昌 330013; 2.东华理工大学 地球科学学院, 江西 南昌 330013; 3.Department of Geology, University of Regina, Regina Canada S4S 0A2; 4.中国科学院 广州地球化学研究所 中国科学院矿物学与成矿学重点实验室, 广东 广州 510640
Author(s):
LI Zenghua123 CHI Guoxiang3* DENG Teng124 and XU Deru124
1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China; 2. School of Earth Sciences, East China University of Technology, Nanchang 330013, Jiangxi, China; 3. Department of Geology, University of Regina, Regina S4S 0A2, Canada; 4. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, CAS Key Laboratory of Mineral and Metallogeny, Guangzhou 510640, Guangdong, China
关键词:
断层活化 构造控矿 阿萨巴斯卡盆地 不整合型铀矿
Keywords:
fault reactivation structural control Athabasca Basin unconformity-related uranium deposits
分类号:
P613
DOI:
10.16539/j.ddgzyckx.2019.03.008
文献标志码:
A
摘要:
先存断层的活化对许多热液矿床的形成起到至关重要的作用。加拿大阿萨巴斯卡盆地的不整合型铀矿是一个受活化断层控制矿床的典型例子。该铀矿产于基底与盆地砂岩之间的不整合面附近, 并与根植于基底的断层密切相关。这些控矿基底断层切穿并错动了盆地的不整合面。一系列证据表明这些基底断层以韧性的方式形成于盆地之前, 但在盆地形成之后又发生脆性活化, 而正是这种断层活化作用控制铀矿的产出。先存断层作为完整岩石中的薄弱位置, 在后期构造运动中, 其活化比产生新断层更容易发生。数值模拟表明在后期挤压构造运动中, 有先存基底断层的不整合面被显著错动, 而无先存断层的不整合面并没有错动。基底断层的脆性活化, 不仅在活化过程中为流体提供了驱动力, 而且由于活化导致岩石渗透率的提高, 为后期的流体流动提供了通道以及容矿场所, 形成阿萨巴斯卡盆地的不整合型铀矿。
Abstract:
Reactivation of pre-existing faults plays an important role in the formation of many hydrothermal ore deposits. The unconformity-related uranium deposits in the Athabasca Basin (Canada) is a good example of controls of fault reactivation on hydrothermal mineralization. The unconformity-related uranium deposits in the Athabasca Basin are closely associated with basement faults, which have significantly displaced the unconformity surface between the basin and basement. These faults were initially formed before the basin but were reactivated after the formation of the basin; it is the reactivation of the basement faults that controlled the uranium mineralization. Pre-existing faults represent structural weakness, therefore, it is easier for fractures to form along pre-existing faults (i.e., fault reactivation) than to be created in the intact rocks. Numerical simulation demonstrates that during tectonic compression, the unconformity surface with pre-existing basement fault was displaced, whereas the unconformity without pre-existing basement fault was not displaced. The process of fault reactivation and the resultant enhancement of permeability facilitate fluid circulation and mineralization, and eventually control the uranium mineralization in the Athabasca Basin.

参考文献/References:

薛良伟, 石铨曾, 尉向东, 郑亚东, 张进江. 1998. 小秦岭石英脉型金矿的反转成矿机制. 科学通报, 43(2): 203-206.
赵义来, 刘亮明. 2011. 复杂形态岩体接触带成矿耦合动力学三维数值模拟: 以安庆铜矿为例. 大地构造与成矿学, 35(1): 128-136.
Alexandre P, Kyser K, Thomas D, Polito P and Marlat J. 2009. Geochronology of unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan, Canada and their integration in the evolution of the basin. Mineralium Deposita, 44(1): 41-59.
Andrade N. 1989. The Eagle Point Uranium deposits, northern Saskatchewan, Canada. IAEA-Tecdoc: 455- 490.
Annesley I R, Madore C and Portella P. 2005. Geology and thermotectonic evolution of the western margin of the Trans-Hudson Orogen: Evidence from the eastern sub- Athabasca basement, Saskatchewan. Canadian Journal of Earth Sciences, 42(4): 573-597.
Card C D and Noll J. 2016. Host-rock protoliths, pre-ore metasomatic mineral assemblages and textures, and exotic rocks in the western Athabasca Basin: Ore- system controls and implications for the unconformity related uranium model. Saskatchewan Geological Survey, Saskatchewan Ministry of the Economy, Miscellaneous Report.
Card C D, Pana D, Portella P, Thomas D J and Annesley I R. 2007. Basement rocks to the Athabasca Basin, Saskat-chewan and Alberta // Jefferson C W and Delaney G. EXTECH IV: Geology and Uranium Exploration Technology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada, Bulletin 588. Natural Resources Canada, Ottawa: 69- 87.
Chi G X, Bosman S A and Card C D. 2013. Numerical modeling of fluid pressure regime in the Athabasca basin and implications for fluid flow models related to the unconformity-type uranium mineralization. Journal of Geochemical Exploration, 125: 8-19.
Chi G X, Li Z H and Bethune K M. 2014. Numerical modeling of hydrocarbon generation in the Douglas Formation of the Athabasca basin (Canada) and implications for unconformity-related uranium mineralization. Journal of Geochemical Exploration, 144: 37-48.
Chi G X, Li Z H, Chu H X, Bethune K M, Quirt D H, Ledru P, Normand C, Card C D, Bosman S, Davis W J and Potter E G. 2018. A shallow-burial mineralization model for the unconformity-related uranium deposits in the Athabasca Basin. Economic Geology, 113(5): 1209- 1217.
Cox S F, Knackstedt M A and Braun J. 2001. Principles of structural control on permeability and fluid flow in hydrothermal systems. Reviews in Economic Geology, 14: 1-24.
Creaser R A and Stasiuk L D. 2007. Depositional age of the Douglas Formation, northern Saskatchewan, determined by Re-Os geochronology // Jefferson C W and Delaney G. EXTECH IV: Geology and Uranium Exploration Technology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada, Bulletin 588. Natural Resources Canada, Ottawa: 341- 346.
Harvey S E and Bethune K M. 2007. Context of the Deilmann orebody, Key Lake mine, Saskatchewan // Jefferson C W and Delaney G. EXTECH IV: Geology and Uranium Exploration Technology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada, Bulletin 588. Natural Resources Canada, Ottawa: 249-266.
Henley R W and Adams D P M. 1992. Strike-slip fault reactivation as a control on epithermal vein-style gold mineralization. Geology, 20(5): 443-446.
Jeanneret P, Goncalves P, Durand C, Poujol M, Trap P, Marquer D, Quirt D and Ledru P. 2017. Geochronological constraints on the Trans-Hudsonian tectono-meta-morphic evolution of the pre-Athabasca basement within the Wollaston-Mudjatik Transition Zone, Saskat-chewan. Precambrian Research, 301: 152-178.
Jefferson C, Thomas D, Gandhi S, Ramaekers P, Delaney G, Brisbin D, Cutts C, Quirt D, Portella P and Olson R. 2007. Unconformity-associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta // Jefferson C W and Delaney G. EXTECH IV: Geology and Uranium Exploration Technology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada, Bulletin 588. Natural Resources Canada, Ottawa: 23-67.
LeCheminant A N and Heaman L M. 1989. Mackenzie igneous events, Canada - Middle Proterozoic hotspot magmatism associated with ocean opening. Earth and Planetary Science Letters, 96(1-2): 38-48.
Li Z H, Bethune K M, Chi G X, Bosman S A and Card C D. 2015. Topographic features of the sub-Athabasca Group unconformity surface in the southeastern Athabasca Basin and their relationship to uranium ore deposits. Canadian Journal of Earth Sciences, 52(10): 903-920.
Li Z H, Chi G X and Bethune K M. 2016. The effects of basement faults on thermal convection and implications for the formation of unconformity-related uranium deposits in the Athabasca Basin, Canada. Geofluids, 16(4): 729-751.
Li Z H, Chi G X, Bethune K M, Thomas D and Zaluski G. 2017. Structural controls on fluid flow during compressional reactivation of basement faults: Insights from numerical modeling for the formation of unconformity-related uranium deposits in the Athabasca Basin, Canada. Economic Geology, 112(2): 451-466.
McGill B D, Marlatt J L, Matthews R B, Sopuck V J, Homeniuk L A and Hubregtse J J. 1993. The P2 North uranium deposit, Saskatchewan, Canada. Exploration and Mining Geology, 2(4): 321-331.
Mercadier J, Richard A, Boiron M C, Cathelineau M and Cuney M. 2010. Migration of brines in the basement rocks of the Athabasca Basin through microfracture networks (P-Patch U deposit, Canada). Lithos, 115: 121-136.
Oliver N H, McLellan J G, Hobbs B E, Cleverley J S, Ord A and Feltrin L. 2006. Numerical models of extensional deformation, heat transfer, and fluid flows across basement-cover interfaces during basin-related minera-lization. Economic Geology, 101(1): 1-31.
Pagel M, Poty B and Sheppard S M F. 1980. Contribution to some Saskatchewan uranium deposits mainly from fluid inclusion and isotopic data // Ferguson S and Goleby A. Uranium in the Pine Creek geosyncline. International Atomic Energy Agency (IAEA), Vienna: 639-654.
Rabiei M, Chi G, Normand C, Davis W J, Fayek M and Blamey N J F. 2017. Hydrothermal Rare Earth Element (Xenotime) Mineralization at Maw Zone, Athabasca Basin, Canada, and Its Relationship to Unconformity- Related Uranium Deposits. Economic Geology, 112(6): 1483-1507.
Rainbird R H, Stern R A, Rayner N and Jefferson C W. 2007. Age, provenance, and regional correlation of the Athabasca Group, Saskatchewan and Alberta, constrained by igneous and detrital zircon geochro-nology // Jefferson C W and Delaney G. EXTECH IV: Geology and Uranium Exploration Technology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada, Bulletin 588. Natural Resources Canada, Ottawa: 193-209.
Ramaekers P, Jefferson C W, Yeo G M, Collier B, Long D G F, Drever G, Mchardy S, Jiricka D, Cutts C, Wheatley K, Catuneanu O and Bernier S. 2007. Revised geological map and stratigraphy of the Athabasca Group, Saskat-chewan and Alberta // Jefferson C W and Delaney G. EXTECH IV: Geology and Uranium Exploration Technology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada, Bulletin 588. Natural Resources Canada, Ottawa: 155- 192.
Reid K D, Ansdell K, Jiricka D, Witt G and Card C D. 2014. Regional Setting, Geology, and Paragenesis of the Centennial Unconformity-Related Uranium Deposit, Athabasca Basin, Saskatchewan, Canada. Economic Geology, 109(3): 539-566.
Richard A, Banks D A, Mercadier J, Boiron M C, Cuney M and Cathelineau M. 2011. An evaporated seawater origin for the ore-forming brines in unconformity- related uranium deposits (Athabasca Basin, Canada): Cl/Br and δ37Cl analysis of fluid inclusions. Geochimica et Cosmochimica Acta, 75(10): 2792-2810.
Sheahan C, Fayek M, Quirt D and Jefferson C W. 2016. A combined ingress-egress model for the kianna unconformity-related uranium deposit, Shea Creek Project, Athabasca Basin, Canada. Economic Geology, 111(1): 225-257.
Sibson R H. 1985. A note on fault reactivation. Journal of Structural Geology, 7(6): 751-754.
Sibson R H. 2001. Seismogenic framework for hydrothermal transport and ore deposition. Reviews in Economic Geology, 14: 25-50.
Thomas D J, Matthews R B and Sopuck V. 2000. Athabasca Basin (Canada) unconformity-type uranium deposits: Exploration model, current mine developments and exploration directions // Cluer J K, Price J G, Struhsacker E M, Hardyman R F and Morris C L. Geology and Ore Deposits 2000: the Great Basin and Beyond. Geological Society of Nevada Symposium proceedings, Reno Nevada: 103-126.
Tourigny G, Quirt D H, Wilson N S F, Wilson S, Breton G and Portella P. 2007. Geological and structural features of the Sue C uranium deposit, McClean Lake area, Saskatchewan // Jefferson C W and Delaney G. EXTECH IV: Geology and Uranium Exploration Technology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada, Bulletin 588. Natural Resources Canada, Ottawa: 229-247.

相似文献/References:

[1]莫国宏.苏联芭丝吉娜博士来华访问讲学[J].大地构造与成矿学,1987,(11卷03):196.
[2]李石锦.湖南黄沙坪铅锌矿多金属矿床构造控矿特征及成矿浅析[J].大地构造与成矿学,1997,(21卷04):339.
 LI Shijing.A SIMPLE EXPLANATION TO ORE-CONTROLLING STRUCTURE CHARATERS AND ORE-FORMING PROCESS ANALYSIS OF HUANGSHAPING Pb-Zn DEPOSIT IN HUNAN PROVINCE[J].Geotectonica et Metallogenia,1997,(43卷03):339.

备注/Memo

备注/Memo:
收稿日期: 2018-07-08; 改回日期: 2018-12-20
项目资助: 国家重点研发计划项目“深地资源勘查开采”(2016YFC0600401)资助。
第一作者简介: 李增华(1983-), 男, 博士, 主要从事构造与成矿以及流体动力学的研究。Email: lizenghua@gmail.com
通信作者: 池国祥(1963-), 男, 教授, 主要从事矿床学及地质流体方面的研究。Email: guoxiang.chi@uregina.ca
更新日期/Last Update: 2019-06-15