[1]杨梅珍,李建威,赵新福,等.小秦岭大湖矿床石英脉组构和黄铁矿微量元素地球化学对金钼独立成矿作用及其成脉构造环境的制约[J].大地构造与成矿学,2019,(43卷03):447-472.[doi:10.16539/j.ddgzyckx.2019.03.006]
 YANG Meizhen,LI Jianwei,ZHAO Xinfu and ZHOU Yangyang.Microstructure of Quartz Veins and Trace Element Geochemistry of Pyrite: Constraints on Discrete Gold and Molybdenum Mineralization and Tectonic Environment of Veining of the Dahu Au-Mo Deposit, Xiaoqinling District[J].Geotectonica et Metallogenia,2019,(43卷03):447-472.[doi:10.16539/j.ddgzyckx.2019.03.006]
点击复制

小秦岭大湖矿床石英脉组构和黄铁矿微量元素地球化学对金钼独立成矿作用及其成脉构造环境的制约
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2019年43卷03期
页码:
447-472
栏目:
中国大陆(燕山期)构造成矿作用专辑
出版日期:
2019-06-25

文章信息/Info

Title:
Microstructure of Quartz Veins and Trace Element Geochemistry of Pyrite: Constraints on Discrete Gold and Molybdenum Mineralization and Tectonic Environment of Veining of the Dahu Au-Mo Deposit, Xiaoqinling District
文章编号:
1001-1552(2019)03-0447-026
作者:
杨梅珍 李建威 赵新福 周杨杨
中国地质大学(武汉) 资源学院, 湖北 武汉 430074
Author(s):
YANG Meizhen LI Jianwei ZHAO Xinfu and ZHOU Yangyang
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, Hubei, China
关键词:
金、钼矿化石英脉 显微组构 黄铁矿微量元素 构造环境 大湖金钼矿床
Keywords:
Au-Mo quartz vein microstructure trace elements of pyrite tectonic environment Dahu Au-Mo deposit
分类号:
P611
DOI:
10.16539/j.ddgzyckx.2019.03.006
文献标志码:
A
摘要:
本研究以大湖矿床金、钼矿化石英脉体形态、空间关系、矿物共生组合序列等地质特征研究为基础, 采用显微镜和LA-ICP-MS分析技术重点对金、钼热液脉体组构以及黄铁矿微量元素地球化学特征进行系统对比研究, 以揭示小秦岭地区金、钼成矿作用关系及成脉构造环境。研究结果表明, 钼矿化石英脉具晶洞状构造和自形-半自形晶结构, 黄铁矿贫As、Au、Te、Bi、Cu、Pb元素, 和发育自然金、黄铜矿、铜铅铋硫盐矿物浑圆粒状显微包裹体等特点, 反映钼矿化石英脉形成于张性构造空间, 经历了相对缓慢冷却结晶作用过程。结合钼矿化石英脉厚度大, 且变化明显, 以及空间延伸稳定性差等特点, 认为钼矿化石英脉可能形成于相对较低的区域性差异应力场环境, 受控于水力断裂作用形成的张性断裂控矿体系, 为与印支期板块碰撞造山过程相关的独立成矿事件。大湖矿床的金矿化以条带状黄铁矿石英脉型矿化占主导, 其矿物共生组合序列、蚀变类型以及黄铁矿贫As、富Au-Bi-Te元素组合等特征, 与小秦岭地区其他脉型金矿床特征一致, 表明它们统属小秦岭大规模金成矿作用的产物。结合包括大湖矿床在内的小秦岭地区含金石英脉相对较小的厚度, 且变化性小、矿床和区域尺度延伸相对稳定, 以及含金石英脉近东西向优势排列趋势等特征, 认为小秦岭地区大规模含金石英脉形成于相对较高的区域差异应力场环境, 受控于同成矿的南北向伸展构造应力场、近东西向张扭性断裂体系。含金石英脉的形成与小秦岭变质核杂岩隆升剥露过程相耦合, 大湖矿床含金石英脉的塑性变形和脆性碎裂结构可能是赋矿变质核杂岩隆升冷却过程的重要记录。
Abstract:
The relationship between gold and molybdenum mineralization, along with their tectonic environments has been established for the Dahu Au-Mo deposit on the basis of systematic investigation of geological characteristics of the gold- and molybdenite-bearing quartz veins, and a systematic comparison of the typical microstructure of the quartz veins and trace element geochemistry of pyrite. The results indicate that the molybdenite mineralized-quartz veins crystallized at a relatively slow growth rate by a slow cooling in a dilatational space reflected by the open-space filling structures (miarolitic structure), euhedral-subhedral textures of molybdenite-quartz veins, and the characteristics of pyrite including As-free, extremely low contents of Au, Bi, Te, Cu, and Pb, but containing bleb-like micro-inclusions of native gold, chalcopyrite, and Pb-Cu-Bi sulfosalt mineral. Combining with the geological characteristics of the molybdenite-quartz veins including the high variable thickness and lack of continuity, it is considered that the molybdenite-mineralized quartz veins probably formed under a relatively low regional differential stress field environment, controlled by a tensile fracture system generated by a hydraulic fracturing, indicating a separate mineralization event related to the evolution of Indosinian collision orogenic belt according to the molybdenite Re-Os isotope age obtained by previous studies. The gold mineralization in the Dahu deposit is dominated by pyrite-quartz vein type with a laminated structure, and shares features, such as mineral paragenesis, hydrothermal alteration types, and Au-Bi-Te association of the gold-bearing pyrite, with other lode-type gold deposits in the Xiaoqinling district. It is inferred that the auriferous quartz veins in the Dahu deposit and the other gold deposits in the Xiaoqinling district belong to a unified large-scale gold mineralization process. Combining with the geological characteristics of the overall auriferous quartz veins in the Xiaoqinling district, such as the highly regionally continuity, relatively small but stable thickness, and a preferred orientation of the quartz vein, it is believed that the large-scale auriferous quartz veins formed under a relatively high regional differential stress field environment, controlled by a transtensional fault system under a syn-mineralization S-N oriented extensional tectonic regime coupled with the uplift and exhumation of the metamorphic core complex. The microstructures of ductile deformation and brittle fracturing showed by the auriferous quartz veins in the Dahu deposit could be an important record of the uplift and cooling of the ore-hosting metamorphic core complex.

参考文献/References:

毕诗健, 李建威, 李占轲. 2011. 华北克拉通南缘小秦岭金矿区基性脉岩时代及地质意义. 地球科学, 36(1): 8-25.
毕诗健, 李占轲, 唐克非, 高凯. 2016. 小秦岭东桐峪金矿床黄铁矿LA-ICP-MS微量元素特征及其成矿意义. 地球科学, 41(7): 1121-1140.
陈衍景. 2006. 造山型矿床、成矿模式及找矿潜力. 中国地质, 33(6): 1181-1196.
邓亚婷, 王北颖. 1998. 小秦岭小河岩体岩石谱系单位划分及其定位机制. 陕西地质, 16(2): 1-8.
冯建之. 2009. 河南小秦岭金矿构造控矿规律及控矿模式. 矿产与地质, 23(4): 32-37.
冯建之. 2011. 小秦岭金矿田大湖钼金矿床地质特征. 矿产与地质, 25(1): 9-16.
胡正国. 1994. 小秦岭(陕西段)变质杂岩核构造与金矿. 大地构造与成矿学, 18(2): 147-154.
简伟. 2010. 河南小秦岭大湖金钼矿床地质特征、成矿流体及矿床成因研究. 北京: 中国地质大学(北京)硕士学位论文: 1-90.
蒋少涌, 戴宝章, 姜耀辉, 赵海香, 侯明兰. 2009. 胶东和小秦岭: 两类不同构造环境中的造山型金矿省. 岩石学报, 25(11): 2727-2738.
黎世美, 瞿伦全, 苏振邦, 黄建军, 王小生, 岳铮生. 1998. 小秦岭金矿地质和成矿预测. 北京: 地质出版社: 1-113.
李厚民, 陈毓川, 王登红, 叶会寿, 王彦斌, 张长青, 代军治. 2007b. 小秦岭变质岩及脉体锆石SHRIMP U-Pb年龄及其地质意义. 岩石学报, 23(10): 2504- 2512.
李厚民, 叶会寿, 毛景文, 王登红, 陈毓川, 屈文俊, 杜安道. 2007a. 小秦岭金(钼)矿床辉钼矿铼-锇定年及其地质意义. 矿床地质, 26(4): 417-424.
李诺, 孙亚莉, 李晶, 薛良伟, 李文博. 2008. 小秦岭大湖金钼矿床辉钼矿铼锇同位素年龄及印支期成矿事件. 岩石学报, 24(4): 810-816.
刘树文, 张进江, 郑亚东. 1998. 小秦岭变质核杂岩同变形期的P-T路径. 科学通报, 43(3): 312-318.
卢欣祥, 尉向东, 董有, 于在平, 常秋玲, 张冠山, 刘树林, 叶安旺, 索天元, 晋建平. 2004. 小秦岭-熊耳山地区金矿特征与地幔流体. 北京: 地质出版社: 1-128.
强山峰, 毕诗健, 邓晓东, 郭连巧, 李建威. 2013. 豫西小秦岭地区秦南金矿床热液独居石U-Th-Pb定年及其地质意义. 地球科学, 38(1): 43-55.
孙卫志, 王振强. 2012. 小秦岭大湖矿区钼、金矿体地质地球化学特征与差异性分析. 地质论评, 58(4): 671-680.
王团华, 毛景文, 王彦斌. 2008. 小秦岭-熊耳山地区岩墙锆石SHRIMP年代学研究——秦岭造山带岩石圈拆沉的证据. 岩石学报, 24 (6): 1273-1287.
王义天, 毛景文. 2002a. 碰撞造山作用期后伸展体制下的成矿作用——以小秦岭金矿集中区为例. 地质通报, 21(8-9): 562-566.
王义天, 毛景文, 卢欣祥, 叶安旺. 2002b. 河南小秦岭金矿区Q875脉中深部矿化蚀变岩的40Ar-39Ar年龄及其意义. 科学通报, 47(18): 1750-1755.
王义天, 叶会寿, 王义天, 叶会寿, 叶安旺, 李永革, 帅云, 张长青, 代军治. 2010. 小秦岭北缘马家洼石英脉型金钼矿床的辉钼矿Re-Os年龄及其意义. 地学前缘, 17(2): 140-145.
徐启东, 钟增球, 周汉文, 杨发城, 唐学超. 1998. 豫西小秦岭金矿区的一组40Ar/39Ar定年数据. 地质论评, 44(3): 323-327.
张进江, 郑亚东. 1999. 小秦岭变质核杂岩发育的阶段性及其年代确定. 地质学报, 73(2): 190.
张进江, 郑亚东, 刘树文. 1998. 小秦岭变质核杂岩的构造特征、形成机制及构造演化. 北京: 海洋出版社: 17-63.
张进江, 郑亚东, 刘树文. 2003. 小秦岭金矿田中生代构造演化与矿床形成. 地质科学, 38(1): 74-83.
张为民, 王禹, 蔡焕花, 孟宪锋, 徐新光, 李磊. 2015. 小秦岭金矿田F5断裂带基本特征、控矿作用及找矿前景. 黄金, 36(6): 14-19.
赵海香, 戴宝章, 李斌, 朱志勇. 2015. 小秦岭车仓峪钼矿成因研究: 辉钼矿Re-Os年龄及黄铁矿微量元素制约. 岩石学报, 31(3): 784-790.
赵海香, 嵇静, 赵智, 陈建生, 李斌. 2017. 小秦岭大湖金钼矿流体包裹体研究及矿床成因. 高校地质学报, 23(1): 72-82.
朱越, 周汉文, 李少林, 谢瑜, 丁振举, 李建威, 姚书振. 2015. 豫西小秦岭地区晚古元古代地壳深熔作用及构造意义: 岩石学和锆石U-Pb年代学证据. 地球科学, 40(5): 824-839.
Barrie C D, Boyle A P and Prior D J. 2007. An analysis of the microstructures developed in experimentally deformed polycrystalline pyrite and minor sulphide phases using electron backscatter diffraction. Journal of Structural Geology, 29(9): 1494-1511.
Barrie C D, Pearce M A and Boyle A P. 2011. Reconstru-cting the pyrite deformation mechanism map. Ore Geology Reviews, 39(4): 265-276.
Bi S J, Li J W, Zhou M F and Li Z K. 2011. Gold distribution in As-deficient pyrite and Telluride minerallogy of the Yangzhaiyu gold deposit, Xiaoqinling district, southern Northern China Craton. Mineralium Deposita, 46(8): 925-941.
Bons P D and Brok B D. 2000. Crystallographic preferred orientation development by dissolution-precipitation creep. Journal of Structural Geology, 22(11-12): 1713- 1722.
Chen Y J and Santosh M. 2014. Triassic tectonics and mineral systems in the Qinling Orogen, central China. Geological Journal, 49(4-5): 338-358.
Ciobanu C L, Birch, W D, Cook N J, Pring A and Grundler P V. 2010. Petrogenetic significance of Au-Bi-Te-S associations: The example of Maldon, central Victorian gold province, Australia. Lithos, 116(1-2), 1-17.
Ciobanu C L, Cook N J, Damian F and Damian G. 2006. Gold scavenged by bismuth melts: An example from alpine shear remobilizers in the Highis Massif, Romania. Mineralogy and Petrology, 87(3): 351-384.
Ciobanu C L, Cook N J, Pring A, Brugger J, Danyushesky L V and Shimizu M. 2009. ‘Invisible gold’ in bismuth chalcogenides. Geochimica et Cosmochimica Acta, 73(7): 1970-1999.
Ciobanu C L, Cook N J, Pring A, Damian G and Capraru N. 2008. Another look at nagyágite from the type locality, Sacarimb, Romania: Replacement, chemical variation and petrogenetic implications. Mineralogy and Petrology, 93(3): 273-307.
Cook N J, Ciobanu C L and Mao J W. 2009. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China craton (Hebei Province, China). Chemical Geology, 264(1): 101-121.
Cosgrove J W. 1995. The expression of hydraulic fracturing in rocks and sediments. Geological Society, London Special Publications, 92(1): 187-196.
Craig J R, Vokes F M and Solberg T N. 1998. Pyrite: Physical and chemical textures. Mineralium Deposita, 34(1): 82- 101.
Deng X Q, Peng T P and Zhao T P. 2016. Geochronology and geochemistry of the late Paleoproterozoic aluminous A-type granite in the Xiaoqinling area along the southern margin of the North China Craton: Petrogenesis and tectonic implications. Precambrian Research, 285: 127-146.
Fougerouse D, Micklethwaite S, Halfpenny A, Reddy S M, Cliff J B, Martin L A J, Kikburn M, Guaglisardo P and Ulrich S. 2016a. The golden ark: Arsenopyrite crystal plasticity and the retention of gold through high strain and metamorphism. Terra Nova, 28: 181-187.
Fougerouse D, Micklethwaite S, Tomkins A G, Mei Y, Kilburn M Guagliardo P, Fisher L A, Halfpenny A, Gee M and Paterson D. 2016b. Gold remobilisation and formation of high grade ore shoots driven by dissolution- reprecipitation replacement and Ni substitution into auriferous arsenopyrite. Geochimica Cosmochimica Acta, 178: 143-159.
Fougerouse D, Reddy S M, Saxey D W, Rickard W D, van Riessen A and Micklethwaite S. 2016c. Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: Evidence from atom probe microscopy. American Mineralogist, 101(9): 1916-1919.
Frost B R, Mavrogenes J A and Tomkins A G. 2002. Partial melting of sulfide deposits during medium- and high- grade metamorphism. Canadian Mineralogist, 40(1): 1-18.
Goldfarb, R J, Groves, D I and Gardoll S. 2001. Orogenic gold and geological time: A global synthesis. Ore Geology Reviews, 18(1-2): 1-75.
Hirth G and Tullis J. 1992. Dislocation creep regimes in quartz aggregates. Journal of Structural Geology, 14(2): 145-159.
Jian W, Lehmann B, Mao J W, Ye H S, Li Z Y, He H J, Zhang J G, Zhang H and Feng J W. 2015. Mineralogy, fluid characteristics, and Re-Os age of the Late Triassic Dahu Au-Mo deposit, Xiaoqinling region, Central China: Evidence for a magmatic-hydrothermal origin. Economic Geology, 110(1): 119-145.
Jiang N, Xu J H and Song M X. 1999. Fluid inclusion characteristics of mesothermal gold deposits in the Xiaoqinling district, Shaanxi and Henan Provinces, People’s Republic of China. Mineralium Deposita, 34(2): 150-162.
Large R R, Danyushevsky L, Hollit C, Maslennikov V, Meffre S, Gilbert S, Bull S, Scott R, Emsbo P, Thomas H, Singh B and Foster J. 2009. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology, 104(5): 635-668.
Large R R, Maslennikov V V, Robert F, Danyushevsky L V and Chang Z. 2007. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia. Economic Geology, 102(7): 1233-1267.
Lee J K W. 1995. Multipath diffusion in geochronology. Contributions to Mineralogy and Petrology, 120(1): 60-82.
Li J W, Bi S J, Selby David, Chen L, Paulo Vasconcelos, David Thiede, Zhou M F, Zhao X F, Li Z K and Qiu H N. 2012a. Giant Mesozoic gold provinces related to the destruction of the North China Craton. Earth and Planetary Science Letters, 349-350: 26-37.
Li J W, Li Z K, Zhou M F, Chen L, Bi S J, Deng X D, Qiu H N, Benjamin Cohen, David Selby and Zhao X F. 2012b. The Early Cretaceous Yangzhaiyu lode gold deposit, North China Craton: A link between craton reactivation and gold veining. Economic Geology, 107(1): 43-79.
Mao J W, Xie G Q, Pirajno F, Ye H S, Wang Y B, Li Y F, Xiang J F and Zhao H J. 2010. Late Jurassic-Early Cretaceous granitoid magmatism in eastern Qinling, central-eastern China: SHRIMP zircon U-Pb ages and tectonic implications. Australian Journal of Earth Sciences, 57(1): 51-78.
McCuaig T C and Kerrich R. 1998. P-T-t-deformation-fluid characteristics of lode gold deposit: Evidence from alteration systematics. Ore Geology Reviews, 12(6): 381-453.
Morey A A, Tomkins A G, Bierlein F P, Weinberg R F and Davidson G J. 2008. Bimodal distribution of gold in pyrite and arsenopyrite: Examples from the Archean Boorara and Bardoc shear systems, Yilgarn Craton, Western Australia. Economic Geology, 103(3): 599-614.
Mumin A H, Fleet M E and Chryssoulis S L. 1994. Gold mineralization in As-rich mesothermal gold ores of the Bogosu-Prestea mining district of the Ashanti Gold Belt, Ghana: Remobilization of “invisible” gold. Mineralium Deposita, 29(6): 445-460.
Ni Z Y, Chen Y J, Li N and Zhang H. 2012. Pb-Sr-Nd isotope constraints on the fluid source of the Dahu Au-Mo deposit in Qinling Orogen, central China, and implication for Triassic tectonic setting. Ore Geology Reviews, 46: 60-67.
Oberthur T, Weiser T, Amanor J A and Chryssoulis S L. 1997. Mineralogical sitting and distribution of gold in quartz veins and sulfide ores of the Ashanti mines and other deposits in the Ashanti belt of Ghana: Genetic implications. Mineralium Deposita, 32: 2-15.
Passchier C W and Trouw R A. 2005. Microtectonics. Germany: Springer-verlag Berlin Heidelberg.
Putnis A. 2002. Mineral replacement reactions: From macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66(5): 689-708.
Ramdohr P. 1969. The Ore Minerals and Their lntergrowths. Oxford: Pergamon Press: 1174.
Reddy S M, Timms N E, Trimby P, Kinny P D, Buchan C and Blake K. 2006. Crystal-plastic deformation of zircon: A defect in the assumption of chemical robustness. Geology, 34: 257-260.
Reedy S M and Hough R M. 2013. Microstructural evolution and trace element mobility in Witwatersrand pyrite. Contributions to Mineralogy and Petrology, 166: 1269- 1284.
Reich M, Deditius A, Chryssoulis S, Li J W, Ma C Q, Parada M A, Barra F and Mittermayr F. 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochimica et Cosmochimica Acta, 104: 42-62.
Stipp M, Stunitz H, Heibronner R and Schmid S M. 2002. The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plasitic deformation of quartz over a temperature range from 250 to 700℃. Journal of Structural Geology, 24(12): 1861-1884.
Sung Y H, Ciobanu L, Pring A, Brugger J, Skinner W, Cook N J and Nugus M. 2007. Tellurides from Sunrise Dam gold deposit, Yilgarn Craton, Western Australia: A new occurrence of nagyáfite. Mineralogy and Petrology, 91(3): 249-270.
Tang L, Santosh M, Tsunogae T, Koizumi T, Hu X K and Teng X M. 2017. Petrology, phase equilibria modelling and zircon U-Pb geochronology of Paleoproterozoic mafic granulites from the Fuping Complex, North China Craton. Journal of Metamorphic Geology, doi: 10.1111/jmg.12243.
Thomas H V, Large R R, Bull S W, Maslennikov V, Berry R F, Fraser R, Froud S and Moye R. 2011. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo Gold Mine, Australia: Insights for ore genesis. Economic Geology, 106(1): 1-31.
Tooth B, Brugger J, Ciobanu C L and Liu W H. 2008. Modeling of gold scavenging by bismuth melts coexisting with hydrothermal fluids. Geology, 36(10): 815-818.
Tooth B, Ciobanu C L, Green L, O’Neill, B and Brugger J. 2011. Bi-melt formation and gold scavenging from hydrothermal fluids: An experimental study. Geochimica et Cosmochimica Acta, 75(19): 5423-5443.
Vaughan J P and Kyin A. 2004. Refractory gold ores in Archaean greenstones, Western Australia: Mineralogy, gold paragenesis, metallurgical characterization and classification. Mineralogical Magazine, 68(2): 255-277.
Velasquez G, Beziat D, Salvi S, Siebenaller, L, Borisova A Y, Pokrovski G S and Parseval P. 2014. Formation and deformation of pyrite and implications for gold mineralization in the El Callao district, Venezuela. Economic Geology, 109(2): 457-486.
Vukmanovic Z, Reddy S M, Godel B, Barnes S J, Fiorentini M L, Barnes S J and Kilburn M R. 2014. Relationship between microstructures and grain-scale trace element distribution in komatiite-hosted magmatic sulphide ores. Lithos, 184: 42-61.
Yang J H, Wu F Y and Wilde S A. 2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: An association with lithospheric thinning. Ore Geology Reviews, 23(3): 125-152.
Yu X Q, Liu J L, Li C L, Chen S Q and Dai Y P. 2013. Zircon U-Pb dating and Hf isotope analysis on the Taihua Complex: Constraints on the formation and evolution of the Trans-North China Orogen. Precambrian Research, 230: 31-44.
Zhao H X, Frimmel H E, Jiang S Y and Dai B Z. 2011. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis. Ore Geology Reviews, 43(1): 142-153.
Zhao T P, Zhai M G, Xia B, Li H M, Zhang Y X and Wan Y S. 2004. Study on the zircon SHRIMP ages of the Xiong’er Group volcanic rocks: Constraint on the starting time of covering strata in the North China Craton. Chinese Science Bulletin, 9(23): 2495-2502.

相似文献/References:

[1]李金玺,李智武,刘树根,等.大巴山弧形构造带主要断裂带变形岩石显微组构分析及意义[J].大地构造与成矿学,2015,(39卷04):587.[doi:10.16539/j.ddgzyckx.2015.04.003]
 LI Jinxi,LI Zhiwu,LIU Shugen,et al.Analysis of Microtectonics in Deformed Rocks of Main Faults of Daba Acuate Orogenic Belts, China[J].Geotectonica et Metallogenia,2015,(43卷03):587.[doi:10.16539/j.ddgzyckx.2015.04.003]

备注/Memo

备注/Memo:
收稿日期: 2018-04-17; 改回日期: 2019-03-08
项目资助: “克拉通破坏与成矿响应集成研究”项目(2016YFC023158)和“多板块汇聚与晚中生代成矿大爆发的深部过程”项目(2017YFC0601404)联合资助。
第一作者简介: 杨梅珍(1965-), 女, 副教授, 主要从事矿床地质教学和找矿研究。Email: ymzkitty@163.com
更新日期/Last Update: 2019-06-15