[1]杨富全,张忠利,王 蕊.2018.新疆阿尔泰稀有金属矿地质特征及成矿作用.大地构造与成矿学,42(6):1010-1026.doi:10.16539/j.ddgzyckx.2018.06.006
 YANG Fuquan,ZHANG Zhongli,WANG Rui.2018.Geological Characteristics and Metallogenesis of Rare Metal Deposits in Altay, Xinjiang.Geotectonica et Metallogenia,42(6):1010-1026.doi:10.16539/j.ddgzyckx.2018.06.006
点击复制

新疆阿尔泰稀有金属矿地质特征及成矿作用
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2018年42卷06期
页码:
1010-1026
栏目:
构造地质与成矿学
出版日期:
2018-12-30

文章信息/Info

Title:
Geological Characteristics and Metallogenesis of Rare Metal Deposits in Altay, Xinjiang
文章编号:
1001-1552(2018)06-1010-017
作者:
杨富全1 张忠利2 王 蕊1 李 强1 丁建刚3 苏振华4 麻 坤4
1.中国地质科学院 矿产资源研究所, 自然资源部成矿作用与资源评价重点实验室, 北京 100037; 2.新疆 维吾尔自治区有色地质勘查局七〇六队, 新疆 阿勒泰 836500; 3.新疆维吾尔自治区有色地质勘查局七〇一队, 新疆 昌吉 831100; 4.河北省地矿局 第七地质大队, 河北 三河 065201
Author(s):
YANG Fuquan1 ZHANG Zhongli2 WANG Rui1 LI Qiang1 DING Jiangang3 SU Zhenhua4 and MA Kun4
1. Ministry of Natural Resources Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 2. No.706 Geological Team, Xinjiang Nonferrous Geoexploration Bureau, Altay 836500, Xinjiang, China; 3. No.701 Geological Team, Xinjiang Nonferrous Geoexploration Bureau, Changji 831100, Xinjiang, China; 4. No.7 Geological Party of the Hebei Bureau of Geology, Sanhe 065201, Hebei, China
关键词:
稀有金属矿床 地质特征 时空分布 成矿作用 新疆阿尔泰
Keywords:
rare metallic deposits geological characteristics time-space distribution metallogenesis Altay Xinjiang
分类号:
P612
DOI:
10.16539/j.ddgzyckx.2018.06.006
文献标志码:
A
摘要:
在前人工作和野外调查基础上, 文章总结了新疆阿尔泰稀有金属矿地质特征、时空分布和成矿背景。稀有金属矿分为花岗伟晶岩型和花岗岩型, 以前者为主, 分布于哈龙?青河稀有金属成矿亚带和加曼哈巴?大喀拉苏稀有金属成矿亚带的9个矿集区中。依据成矿时代稀有金属成矿作用分为4期: 奥陶纪?早志留世(476~436 Ma)、晚泥盆世(~370 Ma)、二叠纪(296~258 Ma)和三叠纪?侏罗纪(250~151 Ma), 其中三叠纪?侏罗纪为主要成矿期。前2个成矿期以形成工业白云母矿伴有稀有金属、稀土矿为特色, 形成于板块俯冲阶段, 二叠纪到侏罗纪出现了连续成矿作用, 以形成稀有金属矿为特色, 成矿元素组合复杂。二叠纪为后碰撞环境, 三叠纪?侏罗纪为陆内环境, 区域大规模伸展是形成大规模稀有金属矿的地球动力学背景。阿斯喀尔特Be-Nb-Mo矿床与白云母钠长花岗岩、大喀拉苏Be-Nb-Ta矿床与黑云母花岗岩存在成因关系, 可可托海稀有金属矿床与阿拉尔花岗岩的关系存在很大争议, 其他稀有金属矿床与赋矿花岗岩不存在成因关系。
Abstract:
This paper reviews the geological characteristics, spatial and teporal distribution, and tectonic settings of rare metal deposits in Altay, Xinjiang. The rare metal deposits are predominantly of granitic pegmatite type and less granite type. The pegmatite-type rare metal deposits distribute in nine ore dense districts in the Halong-Qinhe and the Jiamanhaba-Dakalasu rare metal ore-forming subzones. Based on isotopic dating results, the rare metal mineralization took place during Ordovicia to Early Siluria (476 - 436 Ma), Late Devonian (ca.370 Ma), Permian (296 - 258 Ma) and Triassic to Jurassic (250 - 151 Ma), and the majority of the ore deposits are formed in the Triassic to Jurassic period. The first two mineralization periods took place in subduction setting and formed muscovite ores with accompanying rare metals and rare earth elements. Ore mineralization during the Permian to Jurassic period is characterized by rare metal deposits with complex ore metla association. The Permian and the Triassic to Jurassic mineralization occurred in post- collision and continental environments, respectively, and the regional large-scale extension background is favorable for the large-scale rare metal mineralization. Results show that the Dakalasu Be-Nb-Ta deposit is genetically related to the biotite granite, while the Arskartor Be-Nb-Mo deposit is related to the muscovite albite granite. However, it is still controversy regarding the genetic relationship between the Keketuohai No.3 pegmatite and the Aral granite. In addition, no genetic relationship between the other rare metal deposits and their ore-hosting granites has been recognised.

参考文献/References:

柴凤梅, 董连慧, 杨富全, 刘锋, 耿新霞, 黄承科. 2010. 阿尔泰南缘克朗盆地铁木尔特花岗岩体年龄、地球化学特征及成因. 岩石学报, 26(2): 377-386.
陈剑锋. 2011. 阿尔泰3号脉缓倾斜部分的形成和演化. 贵阳: 中国科学院地球化学研究所硕士学位论文: 1-86.
丁欣, 李建康, 丁建刚, 王赛, 刘永超, 王娴. 2016. 新疆阿斯喀尔特Be-Nb-Mo矿床Re-Os同位素年龄及地质意义. 桂林理工大学学报, 36(1): 60-65.
冯荫林, 江晓波. 1987. 新疆阿斯喀尔特伟晶?气成?热液型绿柱石及海蓝宝石的研究. 岩石矿物学杂志, 6(4): 344-351.
郭旭吉, 马占龙. 2015. 新疆福海县哈龙稀有金属矿床地质特征及成因浅析. 西北地质, 48(3): 355-361.
郭正林, 申茂德, 郭旭吉, 忠德, 唐冬梅, 周起凤, 李博泉. 2013. 阿尔泰地区花岗伟晶岩稀有金属成矿机理及找矿标志浅析. 新疆地质, 31(增刊): 77-83.
韩宝福. 2008. 中俄阿尔泰山中生代花岗岩与稀有金属矿床的初步对比分析. 岩石学报, 24(4): 655-660.
何国琦, 成守德, 徐新, 李锦轶, 郝杰. 2004. 中国新疆及邻区大地构造图(1∶2500000)说明书. 北京: 地质出版社: 1-65.
刘锋, 曹峰, 张志欣, 李强. 2014. 新疆可可托海近3号脉花岗岩成岩时代及地球化学特征研究. 岩石学报, 30(1): 1-15.
刘锋, 毛景文, 杨富全, 李延河, 柴凤梅, 耿新霞, 杨宗喜. 2008. 阿尔泰造山带阿巴宫花岗岩体锆石SHRIMP年龄及其地质意义. 地球学报, 29(6): 795- 804.
刘文政, 张辉, 唐红峰, 唐勇, 吕正航. 2015. 新疆阿斯喀尔特铍钼矿床中辉钼矿Re-Os定年及成因意义. 地球化学, 44(2): 145-154.
马占龙, 张辉, 唐勇, 吕正航, 张鑫, 赵景宇. 2015. 新疆卡鲁安矿区伟晶岩锆石U-Pb定年、铪同位素组成及其与哈龙花岗岩成因关系研究. 地球化学, 44(1): 9-26.
秦克章, 申茂德, 唐冬梅, 郭正林, 周起凤, 王春龙, 郭旭吉, 田野, 丁建刚. 2013. 阿尔泰造山带伟晶岩型稀有金属矿化类型与成岩成矿时代. 新疆地质, 31(增刊): 1-7.
任宝琴, 张辉, 唐勇, 吕正航. 2011. 阿尔泰造山带伟晶岩年代学及其地质意义. 矿物学报, 31(3): 587-596.
申茂徳, 郭旭吉, 唐冬梅, 周起凤, 郭正林, 王春龙, 田野. 2016. 阿尔泰稀有金属成矿规律研究与靶区优选评价. “十二五”国家科技支撑计划项目专题报告.
童英. 2006. 阿尔泰造山带晚古生代花岗岩年代学、成因及其地质意义. 北京: 中国地质科学院博士学位论文.
王春龙, 秦克章, 冬梅, 周起凤, 申茂德, 郭正林, 郭旭吉. 2015. 阿尔泰阿斯喀尔特Be-Nb-Mo矿床年代学、锆石Hf同位素研究及其意义. 岩石学报, 31(8): 2337- 2352.
王登红, 陈毓川, 徐志刚. 2003. 新疆阿尔泰印支期伟晶岩的成矿年代学研究. 矿物岩石地球化学通报, 22(1): 14-17.
王登红, 陈毓川, 徐志刚, 李天德, 傅旭杰. 2002. 阿尔泰成矿省的成矿系列及成矿规律. 北京: 原子能出版社: 1-493.
王登红, 陈毓川, 邹天人, 徐志刚, 李华芹, 陈文, 陈富文, 田锋. 2000. 新疆阿尔泰阿祖拜稀有金属?宝石矿床的成矿时代——燕山期稀有金属成矿的新证据. 地质论评, 46(3): 307-311.
王京彬, 徐新. 2006. 新疆北部后碰撞构造演化与成矿. 地质学报, 80(1): 23-31.
王涛, 童英, 李舢, 张建军, 史兴俊, 李锦轶, 韩宝福, 洪大卫. 2010. 阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以中国阿尔泰为例. 岩石矿物学杂志, 29(6): 595-618.
新疆维吾尔自治区有色地质勘查局七0一队. 2015. 新疆富蕴县沙依肯布拉克地区稀有金属矿预查报告.
张辉, 唐勇, 吕正航, 温兴平. 2014. 新疆阿尔泰成矿带哈龙-青河一带稀有金属成矿规律及找矿靶区预测研究. 新疆有色集团科研报告: 1-154.
张亚峰, 蔺新望, 郭岐明, 王星, 赵端昌, 党晨, 姚珊. 2015. 阿尔泰南缘可可托海地区阿拉尔花岗岩体LA-ICP-MS锆石U-Pb定年、岩石地球化学特征及其源区意义. 地质学报, 89(2): 339-354.
钟龙, 王政华, 刘玉琳. 2011. 阿尔泰花岗伟晶岩年代学研究现状——兼谈常规年代学方法在花岗伟晶岩定年中之困惑. 新疆地质, 29(4): 412-415.
朱永峰. 2007. 新疆的印支运动与成矿. 地质通报, 26(5): 510-519.
邹天人. 1996. 新疆阿斯喀尔特似伟晶岩型海蓝宝石?绿柱石矿床. 矿床地质, 15(增刊): 38-40.
邹天人, 李庆昌. 2006. 中国新疆稀有及稀土金属矿床. 北京: 地质出版社: 1-264.
邹天人, 张相宸, 贾富义, 王汝聪, 曹惠志, 吴柏青. 1986. 论阿尔泰3号伟晶岩脉的成因. 矿床地质, 5(4): 34-48.
Annikova I Yu, Vladimirov A G, Vystavnoi S A, Zhuravlev D Z, Kruk N N, Lepekhina E N, Matukov D I, Moroz E NPalesskii S V, Ponomarchuk S N, Rudnev S N, and Sergeev S A. 2006. U-Pb, 39Ar/40Ar data and Sm-Nd, Pb-Pb isotopic study of Kalguty Molybdenum-tungsten ore-magmatic system, Southern Altai. Petrology, 14(1): 81-97.
Berzina A N, Stein H J, Zimmerman A and Sotnikov V I. 2003. Re-Os ages for molybdenite from porphyry Cu-Mo and greisen Mo-W deposits of southern Siberia (Russia) preserve metallogenic record // Mineral Exp?lo?ration and Sustainable Development, 1: 231-234.
Cai K D, Sun M, Yuan C, Zhao G C, Xiao W J and Long X P. 2012. Keketuohai mafic-ultramafic complex in the Chinese Altai, NW China: Petrogenesis and geody?namic significance. Chemical Geology, 294-295: 26-41.
Che X D, Wu F Y, Wang R C, Gerdes A, Ji W Q, Zhao Z H, Yang J H and Zhu Z Y. 2015. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS. Ore Geology Reviews, 65: 979-989.
Dobretsov N L, Berzin N A and Buslov M. 1995. Opening and tectonic evolution of the Paleo-Asian Ocean. Inter-national Geology Review, 37: 335-360.
Hodges K V, Hames W E and Bowring S A. 1994. 40Ar/39Ar gradients in micas from a high-temperature-low- pressure metamorphic terrain: Evidence for very slow cooling and implications for the interpretation of age spectra. Geology, 22: 55-58.
Liu F, Zhang Z X, Li Q, Zhang C and Li C. 2014. New precise timing constraint for the Keketuohai No.3 pegmatite in Xinjiang, China, and identification of its parental pluton. Ore Geology Reviews, 6: 209-219.
Lü Z H, Zhang H, Tang Y and Guan S J. 2012. Petrogenesis and magmatic-hydrothermal evolution time limitation of Kelumute No.112 pegmatite in Altay, Northwestern China: Evidence from zircon U-Pb and Hf isotopes. Lithos, 154: 374-391.
Potseluev A A, Babkin D I and Kotegov V I. 2006. The Kalguty complex deposit, the Gorny Altai: Mineralo?gical and geochemical characteristies and fluid regime of ore formation. Geologiya Rudnykh Mestorozhdenii, 48(5): 439-459.
Wang T, Hong D W, Jahn B M, Tong Y, Wang Y B, Han B F and Wang X X. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogeny. The Journal of Geology, 114: 735-751.
Wang T, Jahn B M, Zheng Y D, Li T B, Gao Y J and Kovachet V P. 2008. Mesozoic granitic magmatism in the Altai Paleozoic accretionary orogen, NW China, and its implications for crustal architecture and growth. AOGS 5th Annual General Meeting Abstract: SE53-A010.
Wang T, Tong Y, Jahn B M, Zou T R, Wang Y B, Hong D W and Han B F. 2007. SHRIMP U-Pb zircon geochro?nology of the Altai No.3 Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geology Reviews, 32: 325-336.
Windley B F, Kroner A, Guo J H, Qu G S, Li Y Y and Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai Orogen, NW China: New zircon age data and tectonic evolution. Journal of Geology, 110: 719-737.
Yang F Q, Mao J W, Liu F, Chai F M, Geng X X, Zhang Z X, Guo X J and Liu G R. 2013. A review of the geological characteristics and mineralization history of iron deposits in the Altay orogenic belt of the Xinjiang, Northwest China. Ore Geology Reviews, 54: 1-16.
Zhang H X, Niu H C, Terada K, Yu X Y, Sato H and Ito J. 2003. Zircon SHRIMP U-Pb dating on plagiogranite from Kuerti ophiolite in Altay, north Xinjiang. Chinese Science Bulletin, 48: 2231-2235.
Zhang X, Zhang H, Ma Z L, Tang Yg, Lü Z H, Zhao J Y and Liu Y L. 2016. A new model for the granite-pegmatite genetic relationships in the Kaluan-Azubai-Qiongkuer pegmatite-related ore fields, the Chinese Altay. Journal of Asian Earth Sciences, 124: 139-155.
Zhou Q F, Qin K Z, Tang D M, Tian Y, Cao M J and Wang C L. 2015. Formation age and evolution time span of the Koktokay No.3 pegmatite, Altai, NW China: Evidence from U-Pb zircon and 40Ar-39Ar muscovite ages. Resource Geology, 65(3): 210-231.
Zhou Q F, Qin K Z, Tang D M, Wang C L and Sakyi P A. 2016. LA-ICP-MS U-Pb zircon, columbite-tantalite and 40Ar-39Ar muscovite age constraints for the rare-element pegmatite dykes in the Altai orogenic belt, NW China. Geology Magzine, doi: 10.1017/S0016756816001096
Zhu Y F, Zeng Y S and Gu L B. 2006. Geochemistry of the rare metal-bearing pegmatite No.3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China. Journal of Asian Earth Sciences, 27: 61-77.

相似文献/References:

[1]燕宁,李社宏,陆智平.青海省兴海县索拉沟铜多金属矿成矿地质特征与矿床成因.大地构造与成矿学,2011.35(1):161.
 YAN Ning,LI Shehong,LU Zhiping.Metallogenic Characterisitics and Genesis of Suolagou Copper Multi Metallic Deposit in Xinghai County,Qinghai Province.Geotectonica et Metallogenia,2011.42(6):161.
[2]陈文明.我国地洼型斑岩、矽卡岩铜、钼矿床的地质特征及形成机制.大地构造与成矿学,1992.16(2):145.
 CHEN Wenming.GEOLOGICAL CHARACTERISTICS AND FORMATION MECHANISM OF PORPHYRY AND SKARN Cu-Mo DEPOSITS OF DIWA TYPE IN CHINA.Geotectonica et Metallogenia,1992.42(6):145.
[3]蒋图治.吉林省红旗岭地区古地热场地质特征及对基性超基性岩侵入体前缘石墨化带地质意义的探讨.大地构造与成矿学,1992.16(2):148.
 JIANG Tuchi.GEOLOGICAL CHARACTERISTICS OF ANCIENT HONGQILIN GEOTHERMAL FIELD AND ITS GEOLOGICAL SIGNIFICANCE IN THE FORMATION OF GRAPHITIZATION ZONE AT THE LEADING EDGE OF THD BASIC-ULTRABASIC INTRUSIVES, JILIN.Geotectonica et Metallogenia,1992.42(6):148.
[4]冯昌荣.新疆塔什库尔干县赞坎铁矿地质特征及成因浅析.大地构造与成矿学,2011.35(3):404.
 FENG Changrong,WU Haicai and CHEN Yong.Geological Characteristics and Genesis of the Zankan Iron Deposit in Taxkorgan, Xinjiang.Geotectonica et Metallogenia,2011.42(6):404.
[5]李俊平.大别山北麓钼矿找矿重大进展及其矿床地质特征研究.大地构造与成矿学,2011.35(4):576.
 LI Junping,LI Yongfeng.Geological Features of Molybdenum Deposits and Ore Prospecting in Northern Slope of the Dabie Mountain, China.Geotectonica et Metallogenia,2011.42(6):576.
[6]李华亮,高成,李正汉*.西藏班公湖地区竟柱山组时代及其构造意义.大地构造与成矿学,2016.4(4):663.doi:10.16539/j.ddgzyckx.2016.04.004
 LI Hualiang,GAO Cheng,LI Zhenghan*.Age and Tectonic Significance of Jingzhushan Formation in Bangong Lake Area, Tibet.Geotectonica et Metallogenia,2016.42(6):663.doi:10.16539/j.ddgzyckx.2016.04.004
[7]周芳春,刘 翔*,李建康.湖南仁里超大型稀有金属矿床的成矿特征与成矿模型.大地构造与成矿学,2019.43(1):077.doi:10.16539/j.ddgzyckx.2019.01.007
 ZHOU Fangchun,LIU Xiang*,LI Jiankang.Metallogenic Characteristics and Prospecting Direction of Renli Super-Large Rare Metal Deposit in Hunan Province, China.Geotectonica et Metallogenia,2019.42(6):077.doi:10.16539/j.ddgzyckx.2019.01.007
[8]代俊峰,李增华,许德如.煤型关键金属矿产研究进展.大地构造与成矿学,2021.45(5):963.doi:10.16539/j.ddgzyckx.2021.05.008
 DAI Junfeng,LI Zenghua,XU Deru.Coal-hosted Critical Metal Deposits: A Review.Geotectonica et Metallogenia,2021.42(6):963.doi:10.16539/j.ddgzyckx.2021.05.008

备注/Memo

备注/Memo:
收稿日期: 2017-08-30; 改回日期: 2017-09-27
项目资助: 中央返还两权价款资金综合研究项目(Y15-1-LQ10)和中央级公益性科研院所基本科研业务费专项资金(K1701)联合资助。
第一作者简介: 杨富全(1968-), 男, 研究员, 博士生导师, 从事矿床地质和成矿规律研究工作。Email: fuquanyang@163.com
更新日期/Last Update: 2018-12-15