[1]徐德明,付建明,陈希清.2017.都庞岭环斑花岗岩的形成时代、成因及其地质意义.大地构造与成矿学,41(3):561-576.doi:10.16539/j.ddgzyckx.2017.03.010
 XU Deming,FU Jianming,CHEN Xiqing.2017.Formation Age and Petrogenesis of the Dupangling RapakiviGranites and its Geological Significance.Geotectonica et Metallogenia,41(3):561-576.doi:10.16539/j.ddgzyckx.2017.03.010
点击复制

都庞岭环斑花岗岩的形成时代、成因及其地质意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2017年41卷03期
页码:
561-576
栏目:
岩石大地构造与地球化学
出版日期:
2017-06-15

文章信息/Info

Title:
Formation Age and Petrogenesis of the Dupangling Rapakivi Granites and its Geological Significance
文章编号:
1001-1552(2017)03-0561-016
作者:
徐德明1 2 付建明1 2 陈希清1 程顺波1 2 马丽艳1 2 张 鲲1 黄 皓1
1.武汉地质矿产研究所, 湖北 武汉 430205; 2.中国地质调查局 花岗岩成岩成矿地质研究中心, 湖北 武汉 430205
Author(s):
XU Deming1 2 FU Jianming1 2 CHEN Xiqing1 CHENG Shunbo1 2 MA Liyan1 2 ZHANG Kun1 and HUANG Hao1
1. Wuhan Institute of Geology and Mineral Resources, Wuhan 430205, Hubei, China; 2. Research Center of Granitic Diagenesis and Mineralization, CGS, Wuhan 430205, Hubei, China
关键词:
环斑花岗岩 锆石SHRIMP U-Pb年龄 岩石成因 构造环境 成矿作用 印支期 华南
Keywords:
rapakivi granite zircon SHRIMP U-Pb age petrogenesis tectonic setting mineralization Indosinian South China
分类号:
P597; P595
DOI:
10.16539/j.ddgzyckx.2017.03.010
文献标志码:
A
摘要:
以往将位于湘南、桂东北的都庞岭花岗岩基分为西体、中体和东体三部分。野外观察和岩相学研究表明, 都庞岭中体和东体主要由黑云母正长花岗岩、黑云母二长花岗岩和二云母二长花岗岩组成, 岩石具斑状结构, 部分钾长石斑晶呈椭球状至球状, 具斜长石环边, 构成环斑结构。采用锆石SHRIMP U-Pb法获得都庞岭中体和东体中环斑花岗岩的侵位年龄分别为226.6±6.9 Ma和209.7±3.1 Ma, 均属于晚三叠世, 相当于印支晚期。都庞岭环斑花岗岩富硅、碱, 贫钛、磷、镁和钙, 其Rb、Cs、Th、U、REE、Pb、Y含量和Rb/Sr、Rb/Ba比值较高, 而Sr、Ba含量和Zr/Hf比值(8.16~25.01)较低, 具强烈的Eu负异常(δEu= 0.02~0.13), 10000×Ga/Al比值(2.64~4.38, 平均3.15)高, 显示A型花岗岩的地球化学特征。与华南印支早期S型花岗岩相比, 都庞岭环斑花岗岩的εNd(t)值(?8.0~ ?8.3)明显偏高(前者低于?10), 而tDM2值(1624~1645 Ma)则明显偏低(前者>1800 Ma), 表明它们可能直接源于地壳物质的部分熔融, 但成岩过程中有地幔物质的参与。都庞岭环斑花岗岩的发现及其时代的确定, 揭示了晚三叠世华南东部处于大陆裂解或造山后伸展的构造环境。结合华南东部沉积/岩石大地构造分析, 认为华南早中生代构造体制的转换发生在中、晚三叠世, 而非前人所认为的发生在中、晚侏罗世; 同时, 环斑花岗岩的出现, 指示了华南中生代大规模成矿作用的来临, 晚三叠世是华南中生代大规模成矿的第一个高峰期。
Abstract:
The Dupangling granitic batholith comprises three separate intrusive units, namely the eastern pluton, the middle pluton and the western pluton. Detailed field observations and petrographic studies show that the middle and eastern plutons mainly consist of biotite syenogranite, biotite monzogranite, and two-mica monzogranite with porphyritic texture. Part of the ellipsoidal to spherical K-feldspar phenocrysts are enclosed by the plagioclase rims (rapakivi texture). Zircon SHRIMP U-Pb dating for rapakivi granite of the middle and eastern plutons yielded ages of 226.6±6.9 Ma and 209.7±3.1 Ma, respectively, indicating that both granite plutons were emplaced during the Late Triassic (Indosinian). The Dupangling rapakivi granites are characterized by high silicon and alkaline but depleted in titanium, phosphorus, calcium and magnesium. They have high contents of Rb, Cs, Th, U, REE, Pb, Y, high Rb/Sr and Rb/Ba ratios, low contents of Sr, Ba, low Zr/Hf ratio (8.16–25.01), strongly negative Eu anomalies (δEu=0.02–0.13) and high 10000×Ga/Al ratio (2.64–4.38, mean 3.15), showing an affinity to A-type granite. In comparison with the early Indosinian S-type granites (εNd(t)1800 Ma) in South China, the Dupangling rapakivi granites have higher εNd(t) (?8.0 – ?8.3) and lower tDM2 (1624–1645 Ma). These demonstrate that the granites originated from partial melting of the crustal material and have undergone insignificant mantle material mingling. The discovery of this A-type granite (210–226 Ma) reveals that the eastern South China was involved in a post-collision extension or continental rift setting during the Late Triassic. In combination with sedimentary/tectonic information, we propose that the change of tectonic system during the Early Mesozoic in South China took place in the Middle-Late Triassic rather than the Middle-Late Jurassic proposed previously. Moreover, this study also suggests that the A-type granites may be an indication of the forthcoming Mesozoic large-scale mineralization in South China, first peak of which was the Late Triassic.

参考文献/References:

包志伟, 赵振华. 2003. 佛冈铝质A型花岗岩的地球化学及其形成环境初探. 地质地球化学, 31(1): 52–61.
蔡明海, 陈开旭, 屈文俊, 刘国庆, 付建明, 印建平. 2006. 湘南荷花坪锡多金属矿床地质特征及辉钼矿Re-Os测年. 矿床地质, 25(3): 263–268.
陈江峰, 郭新生, 汤加富, 周泰禧. 1999. 中国东南地壳增长与Nd同位素模式年龄. 南京大学学报(自然科学版), 35(6): 649–658.
陈卫锋, 陈培荣, 黄宏业, 丁兴, 孙涛. 2007. 湖南白马山岩体花岗岩及其包体的年代学和地球化学研究. 中国科学(D辑), 37(7): 873–893.
陈佑纬, 毕献武, 胡瑞忠, 朱维光, 胥磊落, 董少花. 2010. 贵东岩体黑云母成分特征及其对铀成矿的制约. 矿物岩石地球化学通报, 29(4): 355–363.
范蔚茗, 王岳军, 郭锋, 彭头平. 2003. 湘赣地区中生代镁铁质岩浆作用与岩石圈伸展. 地学前缘, 10(3): 159–169.
付建明, 马昌前, 谢才富, 张业明, 彭松柏. 2005. 湖南金鸡岭铝质A型花岗岩的厘定及构造环境分析. 地球化学, 34(3): 215–226.
付建明, 徐德明, 杨晓君, 马丽艳, 蔡明海, 刘云华, 魏君奇, 刘国庆, 魏道芳, 陈希清, 程顺波, 梅玉萍. 2011. 南岭锡矿. 武汉: 中国地质大学出版社: 1– 241.
甘晓春, 沈渭洲, 朱金初. 1991. 广西栗木水溪庙矿床同位素地质研究. 南京大学学报(地球科学版), (1): 48– 55.
干国梁, 陈志雄, 余凤鸣, 何龙清, 张相训, 卢光豪. 1990. 都庞岭花岗岩的基本特征及成因分析. 广西地质, 3(2): 15–30.
广东省地质矿产局. 1996. 广东省岩石地层. 武汉: 中国地质大学出版社: 1–264.
广西壮族自治区地质矿产局. 1997. 广西壮族自治区岩石地层. 武汉: 中国地质大学出版社: 1–310.
广西壮族自治区第一地质队. 1988. 1∶50000都庞岭地区区域地质调查报告: 1–151.
郭春丽, 郑佳浩, 楼法生, 曾载淋. 2012. 华南印支期花岗岩类的岩石特征、成因类型及其构造动力学背景探讨. 大地构造与成矿学, 36(3): 457–472.
郭锋, 范蔚茗, 林舸, 林源贤. 1997. 湘南道县辉长岩包体的年代学研究及成因探讨. 科学通报, 42(15): 1661–1663.
郭福祥. 1994. 华南大地构造演化的几点认识. 广西地质, 7(1): 1–14.
郭令智, 施央申, 马瑞士. 1983. 西太平洋中、新生代活动大陆边缘和岛弧构造的形成与演化. 地质学报, 57(1): 51–61.
湖南省地质矿产局. 1997. 湖南省岩石地层. 武汉: 中国地质大学出版社: 1–292.
湖南省区域地质调查队. 1974. 1∶200000道县幅区域地质调查报告: 1–192.
贾小辉, 王强, 唐功建. 2009. A型花岗岩的研究进展及意义. 大地构造与成矿学, 33(3): 465–480.
江西省地质矿产厅. 1997. 江西省岩石地层. 武汉: 中国地质大学出版社: 1–381.
李万友, 马昌前, 刘园园, Robinson P T. 2012. 浙江印支期铝质A型花岗岩的发现及其地质意义. 中国科学: 地球科学, 42(2): 164–177.
李晓峰, 冯佐海, 肖荣, 宋慈安, 杨锋, 王翠云, 康志强, 毛伟. 2012. 桂东北钨锡稀有金属矿床的成矿类型、成矿时代及其地质背景. 地质学报, 44(9): 1713– 1725.
李志昌, 路远发, 黄圭成. 2004. 放射性同位素地质学方法与进展. 武汉: 中国地质大学出版社: 1–276.
梁华英, 伍静, 孙卫东, 莫济海, 黄文婷. 2011. 华南印支成矿讨论. 矿物学报, 31(增刊): 53–54.
凌洪飞, 沈渭洲, 邓平, 蒋少涌, 姜耀辉, 邱检生, 黄国龙, 叶海敏, 谭正中. 2005. 粤北帽峰花岗岩体地球化学特征及成因研究. 岩石学报, 21(3): 677–687.
刘昌实, 陈小明, 王汝成, 胡欢. 2003. 广东龙口南昆山铝质A型花岗岩成因. 岩石矿物学杂志, 22(1): l–10.
刘善宝, 王登红, 陈毓川, 李建康, 应立娟, 许建祥, 曾载淋. 2008. 赣南崇义?大余?上犹矿集区不同类型含矿石英中白云母40Ar/39Ar年龄及其地质意义. 地质学报, 82(7): 932–940.
刘耀荣, 贺春平, 刘富国, 郑基俭. 2003. 都庞岭岩体环斑花岗岩的特征. 华南地质与矿产, 19(2): 23–29.
龙宝林, 伍式崇, 徐辉煌. 2009. 湖南锡田钨锡多金属矿床地质特征及找矿方向. 地质与勘探, 45(3): 229–234.
卢欣祥, 董有, 常秋玲, 肖庆辉, 李晓波, 王晓霞. 1996. 秦岭印支期沙河湾奥长环斑花岗岩及其动力学意义. 中国科学(D辑), 26(3): 244–248.
马丽艳, 付建明, 程顺波, 卢友月, 徐德明, 陈希清. 2013. 广西栗木锡铌钽矿田矿化花岗岩锆石SHRIMP U-Pb定年及其意义. 华南地质与矿产, 29(4): 292–298.
马铁球, 柏道远, 邝军, 王先辉. 2005. 湘东南茶陵地区锡田岩体锆石SHRIMP定年及其地质意义. 地质通报, 24(5): 415–419.
毛建仁, 厉子龙, 叶海敏. 2014. 华南中生代构造?岩浆活动研究: 现状与前景. 中国科学: 地球科学, 44(12): 2593–2617.
毛景文, 谢桂清, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329–2338.
彭松柏, 付建明, 刘云华. 2004. 大容山?十万大山花岗岩带中A型紫苏花岗岩、麻粒岩包体的发现及意义. 科学技术与工程, 4(10): 832–834.
祁昌实, 邓希光, 李武显, 李献华, 杨岳衡, 谢烈文. 2007. 桂东南大容山?十万大山S型花岗岩带的成因: 地球化学及Sr-Nd-Hf同位素制约. 岩石学报, 23(2): 403– 412.
邱检生, 王德滋, 蟹泽聪史, Mcinnes B I A. 2000. 福建沿海铝质A型花岗岩的地球化学及岩石成因. 地球化学, 29(4): 313–321.
舒良树. 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035–1053.
舒良树, 周新民, 邓平, 余心起. 2006. 南岭构造带的基本地质特征. 地质论评, 52(2): 251–265.
宋彪, 张玉海, 万渝生. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增刊): 26–30.
王登红, 陈郑辉, 陈毓川, 唐菊兴, 李建康, 应立娟, 王成辉, 刘善宝, 李立兴, 秦燕, 李华芹, 屈文俊, 王彦斌, 陈文, 张彦. 2010. 我国重要矿产地成岩成矿年代学研究新数据. 地质学报, 84(7): 1030–1040.
王艳丽, 祝新友, 刘志刚, 傅其斌. 2013. 广西栗木钨锡稀有金属矿床碱长花岗岩的厘定. 华南地质与矿产, 29(1): 12–18.
夏瑜. 2013. 华南栗木花岗岩体特征及其与成矿作用关系. 现代矿业, (6): 62–64.
肖庆辉, 卢欣祥. 2002. 花岗岩构造环境判别方法 // 花岗岩研究思维与方法. 北京: 地质出版社: 12–52.
谢才富, 朱金初, 丁式江, 张业明, 陈沐龙, 付杨荣, 付太安, 李志宏. 2006. 海南尖峰岭花岗岩体的形成时代、成因及其与抱伦金矿的关系. 岩石学报, 22(10): 2493–2508.
谢晓华, 陈卫锋, 赵葵东, 孙涛, 陈培荣, 蒋少涌, 朱康任, 李妩巍. 2008. 桂东北豆乍山花岗岩年代学与地球化学特征. 岩石学报, 24(6): 1302–1312.
徐夕生, 邓平, O’Reilly S Y, Griffin W L, 周新民, 谭正中. 2003. 华南贵东杂岩体单颗粒锆石激光探针ICPMS U-Pb定年及其成岩意义. 科学通报, 48(12): 1328–1334.
徐夕生, 谢昕. 2005. 中国东南部晚中生代?新生代玄武岩与壳幔作用. 高校地质学报, 11(3): 318–334.
许靖华, 孙枢, 李继亮. 1987. 是华南造山带而不是华南地台. 中国科学(B辑), (10): 1107–1115.
杨锋, 李晓峰, 冯佐海, 白艳萍. 2009. 栗木锡矿云英岩化花岗岩白云母40Ar/39Ar年龄及其地质意义. 桂林工学院学报, 29(1): 21–24.
杨振, 张文兰, 王汝成, 陆建军, 谢磊, 车旭东. 2013. 桂北油麻岭钨矿区成矿岩体的年代学、地球化学及其地质意义. 高校地质学报, 19(1): 159–172.
郁建华, 傅会芹, 张凤兰, 万方晓, 哈巴拉 I, 拉莫 O T, 发斯乔基 M. 1996. 华北地台北部非造山环斑花岗岩及有关岩石. 北京: 中国科学技术出版社: 1–182.
张怀峰, 陆建军, 王汝成, 马东升, 朱金初, 章荣清. 2014. 广西栗木大岐岭隐伏花岗岩的成因及其构造意义: 岩石地球化学、锆石U-Pb年代学和Nd-Hf同位素制约. 中国科学: 地球科学, 44(5): 901–918.
周新民. 2003. 对华南花岗岩研究的若干思考. 高校地质学报, 9(4): 556–565.
邹先武, 崔森, 屈文俊, 白云山, 陈希清. 2009. 广西都庞岭李贵福钨锡多金属矿的Re-Os同位素定年研究. 中国地质, 36(4): 837–844.
Ahl M, Sundblad K and Sch?berg H. 1999. Geology, geochemistry, age and geotectonic evolution of the Dala granitoids, central Sweden. Precambrian Research, 95: 147–166.
Anderson J L and Bender E E. 1989. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America. Lithos, 23: 19–52.
Barth M G, McDonough W F and Rudnick R L. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology, 165: l97–213.
Bettencourt J S, Tosdal R M, Leite Jr W B and Payolla B L. 1999. Mesoproterozoic rapakivi granites of the Rond?nia Tin Province, southwestern border of the Amazonian craton, Brazil: I. Reconnaissance U-Pb geochronology and regional implications. Precambrian Research, 95: 41–67.
Bonin B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, 78: 1–24.
Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97: 1–29.
Bonin B, Azzouni-Sekkal A, Bussy F, Bussy F and Ferrag S. 1998. Alkali-calcic and alkaline post-orogegic (PO) granite magmatism: Petrologic constraints and geodynamic settings. Lithos, 45: 45–70.
Carter A, Roques D and Bristow C. 2001. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 29: 211–214.
Clemens J D, Holloway J R and White A J R. 1986. Origin of the A-type granite: Experimental constraints. American Mineralogist, 71: 317–324.
Collins W J, Beams S D, White A J and Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80: 189–200.
Compston W, Williams I S, Kirschvink J L, Zhang Z C and Ma G G. 1992. Zircon U-Pb ages for the early Cambrian time-scale. Journal of the Geological Society, 149: 171–184.
Creaser R A, Price R C and Wormald R J. 1991. A-type granites revisited: Assessment of a residual-source model. Geology, 19: 163–166.
Dall’Agnol R and Oliveira D C. 2007. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites. Lithos, 93: 215–233.
Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenesis and tectonic implications. Geology, 20: 641?644.
Emslie R F. 1978. Anorthosite massifs, rapakivi granites, and Late Proterozoic rifting of North America. Precambrian Research, 7: 61–98.
Emslie R F. 1991. Granitoids of rapakivi granite-anorthosite and related associations. Precambrian Research, 51: 173–192.
Frost C D and Frost B R. 1997. Reduced rapakivi-type granites: The tholeiitic connection. Geology, 25: 647– 650.
Gao W L, Wang Z X, Song W J, Wang D X and Li C L. 2014. Zircon U-Pb geochronology, geochemistry and tectonic implications of Triassic A-type granites from southeastern Zhejiang, South China. Journal of Asian Earth Sciences, 96: 255–268.
Haapala I. 1995. Metallogeny of the Rapakivi granites. Mineralogy and Petrology, 54: 141–160.
Haapala I and R?m? O T. 1992. Tectonic setting and origin of the Proterozoic rapakivi granite of southeastern Fennoscandia. Transaction of the Royal Society of Edinburgh: Earth Sciences, 83: 165–171.
Haapala I and R?m? O T. 1999. Rapakivi granite and related rocks: An introduction. Precambrian Research, 95: 1–7.
Haapala I, R?m? O T and Frindt S. 2005. Comparison of Proterozoic and Phanerozoic rift-related basaltic-granitic magmatism. Lithos, 80: 1–32.
Jung S, Mezger K and Hoernes S. 1988. Petrology and geochemistry of syn- to post-collisional metaluminous A-type granites: A major and trace element and Nd-Sr-Pb-O isotope study from the Proterozoic Damara Belt, Namibia. Lithos, 25: 147–175.
King P L, White A J R and Chappell B W. 1997. Characterization and origin of aluminous A-type granites of the Lachlan Fold Belt, southeastern Australia. Journal of Petrology, 36: 371–391.
Lenharo S L R, Moura M A and Botelho N F. 2002. Petrogenetic and mineralization processes in Paleo-to Mesoproterozoic rapakivi granites: Examples from Pitinga and Goiás, Brazil. Precambrian Research, 119: 277–299.
Lenharo S L R, Pollard P J and Born H. 2003. Petrology and textural evolution of granites associated with tin and rare-metals mineralization at the Pitinga Mine, Amazonas, Brazil. Lithos, 66: 37–61.
Lepvrier C, Maluski H, Vu Van Tich, Leyreloup A, Phan Truong Thi and Nguyen Van Vuomg. 2004. The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif): Implications for the geodynamic evolution of Indochina. Tectonophysics, 393: 87–118.
Li X H, Li Z X and Li W X. 2006. Initiation of the Indosinian orogeny in South China: Evidence for a Permian magmatic arc on Hainan Island. Journal of Petrology, 114: 341–353.
Li Z X and Li X H. 2007. Formation of the 1300 km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179–182.
Loiselle M C and Wones D R. 1979. Characteristics and origin of anorogenic granites. Geological Society of America, Abstracts with Programs, 11: 468.
Ludwig K R. 2003. User’s manual for Isoplot 3.00: A geochronological toolkit for Microsoft Exccel. Berkeley Geochronolgical Center Special Publication, 4: 1–70.
Mao J R, Ye H M, Liu K, Li Z L, Takahashi Y, Zhao X L, Kee W S. 2013. The Indosinian collision-extension event between the South China Block and the Palaeo-Pacific plate: Evidence from Indosinian alkaline granitic rocks in Dashuang, eastern Zhejiang, South China. Lithos, 172–173: 81–97.
McDonough W F and Sun S S. 1995. The composition of the earth. Chemical Geology, 120: 223–253.
Qi L, Hu J and Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51(3): 507–513.
R?m? O T. 1991. Petrogenesis of the Proterozoic rapakivi granites and related basic rocks of southeastern Fennoscandia: Nd and Pb isotopic and general geochemical constraints. Geological Survey of Finland Bulletin, 355: 161.
R?m? O T and Haapala I. 1995. One hundred years of rapakivi granite. Mineralogy and Petrology, 52: 129–146.
Savel’eva V B and Bazarova E P. 2012. The Early Proterozoic Primorskii complex of rapakivi granites (western Cisbaikalia): Geochemistry, crystallization conditions, and ore potential. Russian Geology and Geophysics, 53: 147–168.
Scandolara J E, Fuck R A, Dall’Agnol R and Dantas E L. 2013. Geochemistry and origin of the early Mesoproterozoic mangerite charnockite rapakivi granite association of the Serra da Providência suite and associated gabbros, central-eastern Rond?nia, SW Amazonian Craton, Brazil. Journal of South American Earth Sciences, 45: 166–193.
Solomovich L I and Trifonov B A. 1991. The association of rapakivi ganites, alkaline rocks, and carbonatites in the Tien Shan. International Geology Review, 33(2): 191–202.
Sun Y, Ma C Q, Liu Y Y and She Z B. 2011. Geochronological and geochemical constraints on the petrogenesis of late Triassic aluminous A-type granites in southeast China. Journal of Asian Earth Sciences, 42: 1117–1131.
Turner S P, Fosen J D and Morrison R S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos, 28: 151–179.
Vorma A. 1976. On the petrochemistry of rapakivi granites with special reference to the Laitila massif, southwestern Finland. Geological Survey of Finland Bulletin, 285: 1–98.
Wang D Z and Shu L S. 2012. Late Mesozoic basin and range tectonics and related magmatism in Southeast China. Geoscience Frontiers, 3(2): 109–124.
Wang Q, Li J W, Jian P, Zhao Z H, Xiong X L, Bao Z W, Xu J F, Li C F and Ma J L. 2005. Alkaline syenites in eastern Cathaysia (South China): Link to Permian?Triassic transtension. Earth and Planetary Science Letters, 230: 339–354.
Wang Y J, Fan W M, Cawood P A, Ji S C, Peng T P and Chen X Y. 2007. Indosinian high-strain deformation for the Yunkaidashan tectonic belt, South China: Kinematics and 40Ar/39Ar geochronological constraints. Tectonics, 26. DOI: 10.1029/2007TC00209
Wang Y J, Fan W M, Zhang G W and Zhang Y H. 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Research, 23: 1273–1305.
Whalen J B, Carrie K L and Chappell B W. 1987. A-type granites: Geochemieal charaeteristis, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407–419.
Williams I S and Claesson S. 1987. Isotope evidence for the Precambrian province and Caledonian metamorphism of high grade paragneiss from the Seve Nappes, Scandinavian Caledonides, Ⅱ. Ion microprobe zircon U-Th-Pb. Contributions to Mineralogy and Petrology, 97: 205–217.
Windley B F. 1991. Early Proterozoic collision tectonics, and rapakivi granites as intrusions in an extensional thrust-thickened crust: The Ketilidian orogeny, South Greenland. Tectonophysics, 195: 1–10.
Wones D R. 1980. Contributions of crystallography, mineralogy, and petrology to the geology of the Lucerne pluton, Hancock County, Maine. American Mineralogist, 65: 411–437.
Wu F Y, Sun D Y, Li X H, Jahn B M and Wilde S A. 2002. A-type granites in Northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, l87: 143–l73.
Zhao K D, Jiang S Y, Chen W F, Chen P R and Lin H F. 2013. Zircon U-Pb chronology and elemental and Sr-Nd-Hf isotope geochemistry of two Triassic A-type granites in South China: Implication for petrogenesis and Indosinian transtensional tectonism. Lithos, 160?161: 292–306.

相似文献/References:

[1]王艳楠,张 进,陈必河.雪峰山黔阳地区基性岩锆石SHRIMP U-Pb 年龄及意义.大地构造与成矿学,2014.38(3):706.
 WANG Yannan,ZHANG Jin,CHEN Bihe.Zircon SHRIMP U-Pb Ages of the Mafic Rocks from the Qianyang Region in Xuefengshan and Their Implication.Geotectonica et Metallogenia,2014.41(3):706.
[2]陈迪,马铁球,刘伟.湘东南万洋山岩体的锆石SHRIMP U-Pb年龄、成因及构造意义.大地构造与成矿学,2016.4(4):873.doi:10.16539/j.ddgzyckx.2016.04.018
 CHEN Di,MA Tieqiu,LIU Wei.Zircon SHRIMP U-Pb Age, Petrogenesis and Tectonic Implication of Wanyangshan Pluton in Southeast Hunan Province.Geotectonica et Metallogenia,2016.41(3):873.doi:10.16539/j.ddgzyckx.2016.04.018
[3]王亚磊,李文渊,张照伟.新疆圪塔山口含铜镍岩体锆石SHRIMP U-Pb年龄、岩石地球化学特征及其地质意义.大地构造与成矿学,2016.4(6):1275.doi:10.16539/j.ddgzyckx.2016.06.014
 WANG Yalei,LI Wenyuan,ZHANG Zhaowei.Geochronological and Geochemical Characteristics of Getashankou Cu-Ni Bearing Intrusion in Eastern Tianshan, Xinjiang and its Geological Significance.Geotectonica et Metallogenia,2016.41(3):1275.doi:10.16539/j.ddgzyckx.2016.06.014

备注/Memo

备注/Memo:
收稿日期: 2015-03-08; 改回日期: 2015-05-18 项目资助: 中国地质调查局地质矿产调查评价项目(1212010813061、1212011085405)资助。 第一作者简介: 徐德明(1964–), 男, 研究员, 主要从事岩石地球化学研究及资源调查评价工作。Email: yc502xdm@aliyun.com
更新日期/Last Update: 1900-01-01