[1]赵振华.2016.矿物微量元素组成用于火成岩构造背景判别.大地构造与成矿学,4(5):986-995.doi:10.16539/j.ddgzyckx.2016.05.008
 ZHAO Zhenhua.2016.Discrimination of Tectonic Settings Based on Trace Elements in Igneous Minerals.Geotectonica et Metallogenia,4(5):986-995.doi:10.16539/j.ddgzyckx.2016.05.008
点击复制

矿物微量元素组成用于火成岩构造背景判别
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2016年40卷05期
页码:
986-995
栏目:
岩石大地构造与地球化学
出版日期:
2016-10-15

文章信息/Info

Title:
Discrimination of Tectonic Settings Based on Trace Elements in Igneous Minerals
文章编号:
1001-1552(2016)05-0986-010
作者:
赵振华
中国科学院 广州地球化学研究所, 广东 广州 510640
Author(s):
ZHAO Zhenhua
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
关键词:
构造背景判别 微量元素 锆石 单斜辉石 尖晶石 黑云母 角闪石
Keywords:
tectonic setting discrimination trace elements zircon clinopyroxene spinel biotite amphibole
分类号:
P595
DOI:
10.16539/j.ddgzyckx.2016.05.008
文献标志码:
A
摘要:
火成岩中的矿物, 特别是稳定副矿物的微量元素组成可用于火成岩构造–岩浆背景的判别。产于不同构造背景火成岩中单颗粒锆石原位微量元素含量的准确测定, 积累了大量资料。本文介绍了用锆石微量元素含量的二维核密度分布投影, 构建了U/Yb-Nb/Yb、Sc/Yb-Nb/Yb和 U/Yb-Sc/Yb构造背景判别图解, 可以区分洋中脊、地幔柱影响的洋岛及俯冲有关的弧(大陆弧)等不同构造背景形成的火成岩。单斜辉石、尖晶石、黑云母和角闪石的微量元素或主量元素组成同样可用于构造背景识别。
Abstract:
Tectonic settings of igneous rocks can be discriminated based on trace element geochemistry of their constitute minerals, particular the stable accessory minerals. In-situ analyses of trace element contents of minerals in igneous rocks have been compiled and applied to set up a group of discrimination diagrams for tectonic settings. Density distribution plots were created with two-dimensional kernel of trace elements in igneous zircon which present U/Yb-Nb/Yb, Sc/Yb-Nb/Yb and U/Yb-Sc/Yb diagrams. These diagrams are effective for distinguishing the mid-ocean ridge (MOR), magmatic arc (continental arc) and ocean island (and other plume-influenced) settings. Tectonic setting discrimination using clinopyroxene, spinel, biotite and amphibole are also introduced.

参考文献/References:

赵振华. 2007. 关于岩石微量元素构造环境判别图解使用的有关问题. 大地构造与成矿学, 31(1): 92–103.
周蒂. 1988. 成分数据的对数比统计方法简介. 地质科技情报, 7(2): 107–114.
周蒂. 1998. 地质成分数据统计分析——困难与探索. 地球科学, 23(2): 147–152.
Abdel-Rahman A M. 1994. Nature of biotite from alkaline, calk-alkaline and peraluminous magmas. Journal of Petrology, 35: 525–541.
Belousova E A, Griffin W L, O’Relly S Y and Fisher N J. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143: 602–623.
Cameron M and Papike J J. 1981. Structual and chemical variations in pyroxene. American Mineralogist, 66: 1–50.
Coltorti M, Bonadiman C, Faccini B, Grégoire M, O’Reilly S Y and Powell W. 2007. Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos, 99: 68–84.
Debon F and Le Fort P. 1983. A chemical-mineralogical classification of common plutonic rocks and association. Transactions of the Royal Society Edinburgh: Earth Science, 73: 135–149.
Farmer G L. 2003. Continental basaltic rocks // Holland H D and Turekian K K. Treties on Geochemistry, Vol. 3: The Crust. Oxford: Elsevier-Pergamon: 239–263
Finch R J and Hanchar J M. 2003. Structure and chemistry of zircon and zircon-group minerals. Mineral Society America Reviews in Mineralogy and Geochemistry, 53: 1–25.
Geisler T, Schaltergger U and Tomascher F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements, 3: 43–50.
Gonzalez-Jimenez J M G, Griffin W L, Locmelis M, O’Reilly S Y and Pearson N J. 2012. Contrasted minor- and trace-element compositions of spinel in chromitites of different tectonic settings. 22nd VM Goldshmidt Conference, Post.
Grimes C B, John B E and Kelemen P B. 2007. Trace element chemistry of zircon from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 35(7): 643–646.
Grimes C B, Wooden J L, Cheadle M J and John B E. 2015. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology, 170: 46. DOI: 10.1007/ s00410-015-1199-3
Hanchar J M and Westrenen W V. 2007. Rare earth element behavior in zircon-melt systems. Elements, 3: 37–42.
Klein E M. 2003. Geochemistry of the oceanic crust // Holland H D and Turekian K K. Treties on geochemistry, Vol 3: The Crust. Amsterdam: Elsevier- Pogmon: 433–464.
Le Bas M J. 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage. American Journal of Science, 260: 267–288.
Leterrier J, Maury R C, Thonon P, Griard D and Marchal M. 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science Letters, 59: 139– 154.
Li C S, Arndt N T, Tang Q Y and Ripley E M. 2015. Trace element indiscrimination diagrams. Lithos, 232: 76–83.
Loucks R R. 1990. Discrimination of ophiolitic from nonophiolitic ultramafic-mafic allochthons in orogenic belts by the Al/Ti ratio in clinopyroxene. Geology, 18: 346–349.
Müller D and Groves D I. 1997. Potassic Igneous Rocks and Associated Gold-copper Mineralization. Berlin: Springer: 11–40.
Nisbet E G and Pearce J A. 1977. Clinopyroxene composition in mafic lavas from different tectonic setting. Contributions to Mineralogy and Petrology, 63: 149–160.
Pearce J A. 2014. Immoble element fingerpringting of opgiolites. Elements, 10: 101–108.
Rollinson H R. 1993. Using geochemical data: Evaluation, presentation, interpretation. New York: Longman Scientific Technical: 160–250.
Rudnick R L and Gao S. 2003. Composition of the Continental Crust. Amsterdam: Elsevier: 3: 1–64.
Tang G J, Wyman D A, Wang Q, Li J, Li Z X, Zhao Z H and Sun W D. 2012. Arthenosphere-lithosphere interaction triggered by a slab window during ridge subduction: Trace element and Sr-Nd-Hf-Os isotopeic evidence from late Carboniferous tholiites in the western Junggar area(NW China). Earth and Planetary Science Letters, 329-330: 84–96.
Vermeesch P. 2006a. Tectonic discrimination of basalts with classification trees. Geochimica et Cosmochimica Acta, 70: 1839–1848.
Vermeesch P. 2006b. Tectonic discrimination diagrams revisited. Geochemistry Geophysics Geosystems, 7: 1– 55.

相似文献/References:

[1]孔华,黄德志,金振民.广西平南玄武岩的地球化学特征.大地构造与成矿学,2000.24(4):342.
 KONG Hua,HUANG Dezhi,JIN Zhenmin.GEOCHEMICAL CHARACTERISTICS OF ALKALINE BASALTS IN PINGNAN COUNTY, GUANGXI.Geotectonica et Metallogenia,2000.4(5):342.
[2]刘显凡,倪师军,金景福.滇黔桂微细浸染型金矿成矿物质来源的微量元素地球化学示踪.大地构造与成矿学,1997.21(3):205.
 LIU Xianfan,NI Shijun,JIN Jingfu.THE TRACE ELEMENT GEOCHEMICAL TRACER FOR ORE MATERIAL SOURCES OF CARLIN-TYPE GOLD DEPOSITS──A CASE STUDY OF THE GOLD DEPOSITS IN YUNNAN-GUIZHOU-GUANGXI AREA.Geotectonica et Metallogenia,1997.4(5):205.
[3]董汉文,许志琴,李 源.东喜马拉雅构造结墨脱地区晚三叠世深熔作用的 锆石U-Pb年代限定.大地构造与成矿学,2014.38(2):398.
 DONG Hanwen,XU Zhiqin,LI Yuan and LIU Zhao.Zircon LA-ICP-MS U-Pb Dating of the Triassic Anatexis at Mutuo, the Eastern Himalayan Syntaxis.Geotectonica et Metallogenia,2014.4(5):398.
[4]邹 灏,淡 永*,张寿庭.重庆东南部彭水地区重晶石-萤石矿床的成矿物质来源探讨: 地球化学证据.大地构造与成矿学,2016.4(1):071.doi:10.16539/j.ddgzyckx.2016.01.007
 ZOU Hao,DAN Yong*,ZHANG Shouting.Geochemical Evidence for Sources of Ore-forming Material of Barite-Fluorite Deposits in Pengshui Area, Southeast Chongqing.Geotectonica et Metallogenia,2016.4(5):071.doi:10.16539/j.ddgzyckx.2016.01.007
[5]龙雄志.内蒙古贺根山蛇纹岩化流体来源的H-O-B同位素地球化学制约.大地构造与成矿学,2017.预出版:001.doi:10.16539/j.ddgzyckx.2016.06.019
 LONG Xiongzhi,GUO Feng*.H-O-B Isotopic Constraints on Fluid Origin of Serpentinization of the Hegenshan Ophiolite, Inner Mongolia.Geotectonica et Metallogenia,2017.4(5):001.doi:10.16539/j.ddgzyckx.2016.06.019
[6]蒋英,梁细荣*,梁新权.海南岛陆缘扩张带形成及新生代岩石圈动力学机制: 来自幔源包体的地球化学证据.大地构造与成矿学,2017.41(1):157.doi:10.16539/j.ddgzyckx.2017.01.012
 JIANG Ying,LIANG Xirong*,LIANG Xinquan.Formation Mechanism of East Asia Continental Margin Extensional Belt: Evidence from Geochemistry Study of Hainan Mantle Xenoliths.Geotectonica et Metallogenia,2017.4(5):157.doi:10.16539/j.ddgzyckx.2017.01.012
[7]龙雄志,郭 锋*,赵 亮.内蒙古贺根山蛇纹岩化流体来源的H-O-B同位素地球化学制约.大地构造与成矿学,2017.41(3):590.doi:10.16539/j.ddgzyckx.2016.06.019
 LONG Xiongzhi,GUO Feng*,ZHAO Liang.H-O-B Isotopic Constraints on Fluid Origin of Serpentinization of the Hegenshan Ophiolite, Inner Mongolia.Geotectonica et Metallogenia,2017.4(5):590.doi:10.16539/j.ddgzyckx.2016.06.019
[8]傅晓明,张德贤,戴塔根.不同成因类型矿化中黄铁矿微量元素地球化学记录——以广东大宝山多金属矿床为例.大地构造与成矿学,2018.42(3):505.doi:10.16539/j.ddgzyckx.2018.02.014
 FU Xiaoming,ZHANG Dexian,DAI Tagen and GAO Jianfeng.Trace Element Record of Pyrite from Diverse Deposits—Examples from the Dabaoshan Polymetallic Deposit of Northern Guangdong, South China.Geotectonica et Metallogenia,2018.4(5):505.doi:10.16539/j.ddgzyckx.2018.02.014
[9]刘萌,王智琳*,许德如.湖南井冲钴铜多金属矿床绿泥石、黄铁矿和黄铜矿的矿物学特征及其成矿指示意义.大地构造与成矿学,2018.42(5):862.doi:10.16539/j.ddgzyckx.2018.05.005
 LIU Meng,WANG Zhilin*,XU Deru.Mineralogy of Chlorite, Pyrite and Chalcopyrite in the Jingchong Co-Cu Polymetallic Deposit in Northeastern Hunan Province, South China: Implications for Ore Genesis.Geotectonica et Metallogenia,2018.4(5):862.doi:10.16539/j.ddgzyckx.2018.05.005
[10]黄乾峰,吴堑虹,张云蛟.江西乐华铅锌矿花岗斑岩锆石年代学、微量元素特征及其地质意义.大地构造与成矿学,2018.42(6):1121.doi:10.16539/j.ddgzyckx.2018.06.013
 HUANG Qianfeng,WU Qianhong,ZHANG Yunjiao.U-Pb Ages and Trace Element Characteristics of Zircon from Granite Porphyry in Lehua Lead-zinc Deposit, Jiangxi Province and their Geological Significances.Geotectonica et Metallogenia,2018.4(5):1121.doi:10.16539/j.ddgzyckx.2018.06.013

备注/Memo

备注/Memo:
收稿日期: 2016-03-11; 改回日期: 2016-03-28 项目资助: NSFC-新疆联合基金重点项目(U1203291)和国家自然科学基金(41273056)联合资助。 第一作者简介: 赵振华(1942–), 男, 研究员, 地球化学专业。Email: zhzhao@gig.ac.cn
更新日期/Last Update: 1900-01-01