[1]李华亮,高成,李正汉*.2016.西藏班公湖地区竟柱山组时代及其构造意义.大地构造与成矿学,4(4):663-673.doi:10.16539/j.ddgzyckx.2016.04.004
 LI Hualiang,GAO Cheng,LI Zhenghan*.2016.Age and Tectonic Significance of Jingzhushan Formation in Bangong Lake Area, Tibet.Geotectonica et Metallogenia,4(4):663-673.doi:10.16539/j.ddgzyckx.2016.04.004
点击复制

西藏班公湖地区竟柱山组时代及其构造意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2016年40卷04期
页码:
663-673
栏目:
构造地质学
出版日期:
2016-08-15

文章信息/Info

Title:
Age and Tectonic Significance of Jingzhushan Formation in Bangong Lake Area, Tibet
文章编号:
1001-1552(2016)04-0663-011
作者:
李华亮12 高成3 李正汉1* 张璋4 彭智敏4 关俊雷4
1.中国地质大学(武汉) 紧缺矿产资源勘查协同创新中心, 湖北 武汉 430074; 2.中国地质大学(武汉) 资源学院, 湖北 武汉 430074; 3.中陕核工业集团公司, 陕西 西安 710100; 4.中国地质调查局 成都地质调查 中心, 四川 成都 610081
Author(s):
LI Hualiang12 GAO Cheng3 LI Zhenghan1* ZHANG Zhang4 PENG Zhimin4 and GUAN Junlei4
1. Collaborative Innovation Center for Exploration of Strategic Mineral Resources, China University of Geosciences, Wuhan 430074, Hubei, China; 2. Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, Hubei, China; 3. Sino Shaanxi Nuclear Industry Group, Xi’an 710100, Shaanxi, China; 4. Chengdu Center of China Geological Survey, Chengdu 610081, Sichuan, China
关键词:
竟柱山组 地质特征 形成时代 洋陆转换 班公湖地区
Keywords:
Jingzhushan Formation geological character age ocean-continent transition Bangong Lake area
分类号:
P597; P542
DOI:
10.16539/j.ddgzyckx.2016.04.004
文献标志码:
A
摘要:
上白垩统竟柱山组呈近EW向分布于班公湖–怒江缝合带内, 该组以陆相磨拉石建造为特征, 角度不整合在蛇绿岩及老的海相地层之上, 从早到晚由河流相向湖泊相演化。本文以班公湖–怒江缝合带西段的班公湖地区出露的竟柱山组为主要研究对象, 对其岩性特征、沉积环境及形成时代进行了分析, 认为竟柱山组为班公湖–怒江特提斯洋全面闭合后的陆相山间盆地沉积, 是洋陆转换全面完成之后的陆相沉积。本文首次对班公湖地区竟柱山组进行了ESR年代学、磁性地层学研究, 得出了研究区竟柱山组底部砾岩的ESR年龄为92.0±9.0 Ma, 古地磁测年显示该组的底界年龄约为96 Ma。班公湖地区在96 Ma左右全面完成了由洋到陆的转换, 进入了陆内环境。
Abstract:
The Upper Cretaceous Jingzhushan Formation distributes along the east-west Bangong Lake-Nujiang suture. It consists mainly of continental molasse formation overling unconformably the ophiolites and marine strata. The sedimentary features changed from early fluvial to later lacustrine facies. This paper focus on the Upper Cretaceous Jingzhushan Formation in the Bangong Lake-Nujiang suture zone, and the petrology, sedimentary environment and age of the sequences were analyzed. It is suggested that the Jingzhushan Formation was deposited in a continental intermontane sedimentary basin that formed subsequent to the closure of the Bangong Lake-Nujiang Tethys Sea and evolved into a continental sedimentary basin when the ocean-continent transition finished. It is the first time to research the ESR chronology and magnetostratigraphy on the Jingzhushan Formation in the Bangong lake area. The ESR results indicate that the age of the lower part of the Jingzhushan Formation is about 92.0±9.0 Ma, and the magnetostratigraphical data show that the bottom age is about 96 Ma. It’s concluded that in the Bangong Lake area the ocean-continent transition ended and evolved into intracontinental environment in 96 Ma.

参考文献/References:

耿全如, 彭智敏, 张璋, 潘桂棠, 王立全, 关俊雷, 贾宝江, 刁志忠. 2012a. 班公湖–怒江成矿带及邻区特提斯演化与成矿地质背景. 北京: 地质出版社: 114– 122.
耿全如, 彭智敏, 张璋, 潘桂棠, 王立全, 关俊雷, 贾宝江, 刁志忠. 2012b. 班公湖–怒江成矿带及邻区1∶75万地质图(含说明书). 北京: 地质出版社.
郭铁鹰, 粱定益, 张宜智. 1991. 西藏阿里地质. 武汉: 中国地质大学出版社: 103–104.
和钟铧, 杨德明, 王天武, 黄应聪. 2006. 西藏比如盆地竟柱山组沉积–火山岩形成环境及构造意义. 沉积与特提斯地质, 26(1): 8–12.
黄汲清, 陈炳蔚. 1987. 中国及邻区特提斯海的演化. 北京: 地质出版社: 123–143.
贾共祥, 杜凤军, 刘伟. 2007. 西藏尼玛一带上白垩统竟柱山组的厘定及其意义. 地质调查与研究, 30(3): 172–177.
江西省地质调查研究院. 2004. 1∶25万日土县幅区域地质调查报告: 64–73.
李德威. 2003. 青藏高原及邻区大地构造单元划分新方案. 地学前缘, 10(2): 291–292.
李德威, 庄育勋. 2006. 青藏高原大陆动力学的科学问题. 地质科技情报, 25(2): 1–10.
李震宇, 黄宝春, 方晓思, 张春霞. 2010. 西峡盆地含恐龙蛋化石剖面磁性地层学结果及其构造地质意义. 地球物理学报, 53(4): 874–887.
梁兴中, 高钧成. 1999. 断裂成矿年龄的α石英ESR研究. 矿物岩石, 19(2): 69–71.
潘桂棠, 王培生, 徐耀荣, 焦淑沛, 向天秀. 1990. 青藏高原新生代构造演化. 北京: 地质出版社: 46–120.
潘桂棠, 朱弟成, 王立全, 廖忠礼, 耿全如, 江新胜. 2004. 班公湖–怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘, 11(4): 371–382.
任纪舜, 肖黎薇. 2004. 1∶25万地质填图进一步揭开了青藏高原大地构造的神秘面纱. 地质通报, 23(1): 1–11.
孙立新. 2005. 班公湖–怒江缝合带中段晚侏罗世–早白垩世碰撞作用的沉积响应. 北京: 中国地质大学(北京)博士学位论文: 1–124.
唐熊, 陶晓风. 2009. 措勤地区竟柱山组沉积特征及构造意义. 沉积与特提斯地质, 29(1): 53–57.
王希斌, 鲍佩声, 邓万明, 王方国. 1987. 喜马拉雅岩石圈构造演化西藏蛇绿岩. 北京: 地质出版社: 138– 214.
西藏自治区地质矿产局. 1993. 西藏自治区区域地质志. 北京: 地质出版社: 346–364.
西藏自治区地质矿产局. 1997. 西藏自治区岩石地层. 武汉: 中国地质大学出版社: 2–260.
夏邦栋, 张开均, 孔庆友, 林鹤鸣. 1999. 青藏高原内部三条磨拉石带确定及其构造意. 地学前缘, 6(3): 173–180.
杨坤光, 梁兴中, 谢建磊, 杨奎锋. 2006. ESR定年: 一种确定脆性断层活动年龄的方法原理与应用. 地球科学进展, 21(4): 430–435.
业渝光. 1992. 电子自旋共振(ESR)测年方法简介. 中国地质, (3): 28–29.
业渝光, 刁少波, 邬象龙. 2000. “哑层”ESR测年研究及其应用//第三届全国地层会议论文集. 北京: 地质出版社: 370–375.
钟康惠, 梁兴中, 刘肇昌, 舒良树, 李凡友, 施央申, 唐菊兴. 2004. 藏东三江构造带云南段α石英热活化ESR定年与新生代构造事件. 地质通报, 23(12): 1231–1237.
Barberà X, Cabrera L, Marzo M, Parés J M and Agustí J. 2001. A complete terrestrial Oligocene magnetobio stratigraphy from the Ebro Basin, Spain. Earth and Planetary Science Letters, 187: 1–16.
Butler R. 1995. When did India hit Asia? Nature, 373: 20–21.
Fan J J, Li C, Xie C M and Wang M. 2014. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: Implications for the evolution of the Bangongco-Nujiang oceanic arm of Neo-Tethys. International Geology Review, 56: 1504– 1520.
Fisher R A. 1953. Dispersion on a sphere. Proceedings of the Royal Society, London (Series A), 217: 295–305.
Gradstein F M, Agterberg F P, Ogg J G, Hardenbol J, Veen P V, Thierry J and Huang Z H. 1994. A Mesozoic time scale. Journal of Geophysical Research, 99(12): 24051– 24074.
Gradstein F M, Ogg J G and Smith A G. 2004. A Geologic Time Scale. London: Cambridge University Press: 165–187.
Gruen R. 1989. ESR dating for the early Earth. Nature, 338: 543–544.
Guillot S, Garzanti E, Baratoux D, Marquer D, Mahéo G and Sigoyer J d. 2003. Reconstructing the total shortening history of the NW Himalaya. Geochemistry, Geophysics, Geosystems, 4: 1064. doi: 10.1029/2002GC000484.
Guynn J H, Kapp P, Pullen A, Heizler M, Gehrels G and Ding L. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505–508.
Haines S S, Klemperer S L and Brown L. 2003. INDEPTH III seismic data: From surface observations to deep crustal processes in Tibet. Tectonics, 22(1): 1001-1019.
Kapp P, Yin A, Harrison T M and Ding L. 2005. Cretaceous- Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117(7–8): 865–878.
Kirschvink J L. 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophysical Journal of Royal Astronomical Society, 62(3): 699–718.
Lopez-Blanco M. 2002. Sedimentary response to thrusting and fold growing on the SE margin of the Ebro Basin (Paleogene, NE Spain). Sedimentary Geology, 146: 133–154.
Lopez-Blanco M, Marzo M, Burbank D W, Verges J, Roca E, Anadon P and Pina J. 2000. Tectonic and climatic controls on the development of foreland fan deltas: Montserrat and Sant Lloren? del Munt systems (Middle Eocene, Ebro Basin, NE Spain). Sedimentary Geology, 138: 17–39.
Murphy M A, Yin A and Harrison T M. 1999. Did the Indo-Asian collision alone create the Tibetan plateau? Geology, 27(3): 285–286.
Nicholas S H and David L B. 2007. The diachroneity of alluvial-fan lithostratigraphy? A test case from southeastern Ebro basin magnetostratigraphy. Earth and Planetary Science Letters, 262: 343–362.
Sadler P M. 1981. Sediment accumulation rates and the completeness of stratigraphic sections. Journal of Geology, 89: 569–584.
Zhao T P, Zhou M F, Zhao J H, Zhang K J and Chen W. 2008. Geochronology and geochemistry of the ca. 80 Ma Rutog granitic pluton, northwestern Tibet: Implications for the tectonic evolution of the Lhasa Terrane. Geological Magazine, 145(6): 845–857.
Zhu D C, Zhao Z D, Niu Y L, Mo X X, Chung S L, Hou Z Q, Wang L Q and Wu F Y. 2011. The Lhasa terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301: 241–255.
Zijderveld J D A. 1967. AC demagnetization of rocks: analysis of results // Collision D W, Creer K M and Runcorn S K. Methods in Palaeomagnetism. New York: Elsevier: 254–286.

相似文献/References:

[1]燕宁,李社宏,陆智平.青海省兴海县索拉沟铜多金属矿成矿地质特征与矿床成因.大地构造与成矿学,2011.35(1):161.
 YAN Ning,LI Shehong,LU Zhiping.Metallogenic Characterisitics and Genesis of Suolagou Copper Multi Metallic Deposit in Xinghai County,Qinghai Province.Geotectonica et Metallogenia,2011.4(4):161.
[2]陈文明.我国地洼型斑岩、矽卡岩铜、钼矿床的地质特征及形成机制.大地构造与成矿学,1992.16(2):145.
 CHEN Wenming.GEOLOGICAL CHARACTERISTICS AND FORMATION MECHANISM OF PORPHYRY AND SKARN Cu-Mo DEPOSITS OF DIWA TYPE IN CHINA.Geotectonica et Metallogenia,1992.4(4):145.
[3]蒋图治.吉林省红旗岭地区古地热场地质特征及对基性超基性岩侵入体前缘石墨化带地质意义的探讨.大地构造与成矿学,1992.16(2):148.
 JIANG Tuchi.GEOLOGICAL CHARACTERISTICS OF ANCIENT HONGQILIN GEOTHERMAL FIELD AND ITS GEOLOGICAL SIGNIFICANCE IN THE FORMATION OF GRAPHITIZATION ZONE AT THE LEADING EDGE OF THD BASIC-ULTRABASIC INTRUSIVES, JILIN.Geotectonica et Metallogenia,1992.4(4):148.
[4]冯昌荣.新疆塔什库尔干县赞坎铁矿地质特征及成因浅析.大地构造与成矿学,2011.35(3):404.
 FENG Changrong,WU Haicai and CHEN Yong.Geological Characteristics and Genesis of the Zankan Iron Deposit in Taxkorgan, Xinjiang.Geotectonica et Metallogenia,2011.4(4):404.
[5]李俊平.大别山北麓钼矿找矿重大进展及其矿床地质特征研究.大地构造与成矿学,2011.35(4):576.
 LI Junping,LI Yongfeng.Geological Features of Molybdenum Deposits and Ore Prospecting in Northern Slope of the Dabie Mountain, China.Geotectonica et Metallogenia,2011.4(4):576.
[6]杨富全,张忠利,王 蕊.新疆阿尔泰稀有金属矿地质特征及成矿作用.大地构造与成矿学,2018.42(6):1010.doi:10.16539/j.ddgzyckx.2018.06.006
 YANG Fuquan,ZHANG Zhongli,WANG Rui.Geological Characteristics and Metallogenesis of Rare Metal Deposits in Altay, Xinjiang.Geotectonica et Metallogenia,2018.4(4):1010.doi:10.16539/j.ddgzyckx.2018.06.006
[7]代俊峰,李增华,许德如.煤型关键金属矿产研究进展.大地构造与成矿学,2021.45(5):963.doi:10.16539/j.ddgzyckx.2021.05.008
 DAI Junfeng,LI Zenghua,XU Deru.Coal-hosted Critical Metal Deposits: A Review.Geotectonica et Metallogenia,2021.4(4):963.doi:10.16539/j.ddgzyckx.2021.05.008

备注/Memo

备注/Memo:
收稿日期: 2015-09-06; 改回日期: 2015-10-21 项目资助: 中国地质调查局1∶50000区域地质调查项目(1212011121242、1212011121246)及中国地质调查局成都地质调查中心地调科研项目委托业务(121201010000150014-28、121201010000150014-29)联合资助。 第一作者简介: 李华亮(1981–), 男, 博士, 主要从事区域地质矿产调查及构造地质学研究。Email: 469026120@qq.com 通信作者: 李正汉(1977–), 男, 讲师, 主要从事区域地质调查及矿床学研究。Email: 254692086@qq.com
更新日期/Last Update: 1900-01-01