[1]李艳军,魏俊浩,陈华勇.2014.义敦岛弧带夏塞早白垩世A型花岗岩成因: 锆石U-Pb年代学、地球化学及Hf同位素制约.大地构造与成矿学,38(4):939.
 LI Yanjun,WEI Junhao,CHEN Huayong.2014.Petrogenesis of the Xiasai Early Cretaceous A-type Granite from the Yidun Island Arc Belt, SW China: Constraints from Zircon U-Pb Age, Geochemistry and Hf Isotope.Geotectonica et Metallogenia,38(4):939.
点击复制

义敦岛弧带夏塞早白垩世A型花岗岩成因: 锆石U-Pb年代学、地球化学及Hf同位素制约
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2014年38卷04期
页码:
939
栏目:
出版日期:
2014-12-15

文章信息/Info

Title:
Petrogenesis of the Xiasai Early Cretaceous A-type Granite from the Yidun Island Arc Belt, SW China: Constraints from Zircon U-Pb Age, Geochemistry and Hf Isotope
作者:
李艳军 魏俊浩 陈华勇 李 欢 陈 冲 侯本俊
1.中国地质大学 资源学院, 湖北 武汉 430074;
2.中国科学院 广州地球化学研究所, 广东 广州 510640;
3.中国地质调查局 武汉地质调查中心, 湖北 武汉 430205;
4.四川夏塞银业有限责任公司, 四川 甘孜 626000
Author(s):
LI Yanjun WEI Junhao CHEN Huayong LI Huan CHEN Chong and HOU Benjun
1. Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, Hubei, China;
2. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China;
3. Wuhan Center, China Geological Survey, Wuhan 430205, Hubei, China;
4. Xiasai Mining Co. Ltd., Sichuan Province, Ganzi 626000, Sichuan, China)
关键词:
铝质A型花岗岩 锆石U-Pb定年 岩石成因 造山后伸展 义敦岛弧带
Keywords:
aluminous A-type granite zircon U-Pb dating petrogenesis post-collisional extension Yidun island arc belt
分类号:
P597
文献标志码:
A
摘要:
义敦岛弧带晚中生代侵入岩体目前仍缺乏高精度的年代学数据制约, 其成因也存在争论。作者首次在岛弧带中段夏塞银铅锌多金属矿区发现与成矿关系密切的黑云母二长花岗岩。本文对其开展了年代学、地球化学和Hf同位素分析, 探讨成因及构造背景。LA-ICP-MS锆石U-Pb定年结果为103±1 Ma(MSWD=0.5), 为早白垩世晚期岩浆活动产物。花岗岩属高钾钙碱性岩系, 具有高硅、富碱和铁、贫钙和镁特征, SiO2含量为72.94%~74.98%, K2O+Na2O=7.56%~8.08%, 铝饱和指数A/CNK=1.06~1.10, 属弱过铝质岩石。岩石富集Zr、Hf等高场强元素和U、Th等大离子亲石元素, 明显亏损Ba和Sr。REE具有明显的Eu负异常(δEu=0.13~0.25), 总体呈较陡右倾的LREE富集和HREE相对亏损特征。岩相学和地球化学显示其为铝质A型花岗岩。Hf同位素组成εHf(t)=–2.7~0.6, 二阶段模式年龄TDM2=925~1095 Ma。地球化学及Hf同位素揭示夏塞岩体为软流圈地幔与壳源长英质岩浆混合成因, 并经历了斜长石、正长石和褐帘石等矿物的分离结晶。夏塞花岗岩体具有后碰撞花岗岩特征, 形成于早白垩世晚期弧-陆碰撞造山后伸展构造背景。
Abstract:
Many Late Mesozoic granites distribute in the Yidun island arc belt, SW China. However, in situ zircon U-Pb ages and Hf isotopic data of these granites have rarely been reported so far. As lately reported granite from the central segment of the Yidun island arc belt, the Xiasai granite has a close genetic relationship with the Xiasai Ag-Pb-Zn polymetallic deposit. This paper presents (1) laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb age for the Xiasai granite to determine precisely the time of the magmatism, (2) geochemical and Hf isotope data for the Xiasai granite to constrain the petrogenesis and tectonic setting. The LA-ICP-MS analyses of zircon from the Xiasai granite yielded a weighted mean 206Pb/238U age of 103±1 Ma (MSWD=0.5), indicating that it was emplaced in the Early Cretaceous. Petrography and chemical compositions of the granites show that they belong to high-K calc-alkaline series and are characterized by high silicon, enrichment of alkaline and iron but depletion in calcium and magnesium. Their SiO2 and K2O+Na2O contents are 72.94%-74.98% and 7.56%-8.08%, respectively. The A/CNK values vary from 1.06 to 1.10, show a weak peraluminous affinity. The granitic rocks are enriched in high field strength elements (e.g. Zr and Hf) and large ion lithophile elements (e.g. U and Th) but depleted in Ba, Sr, P, and Ti. REEs are characterized by significant negative Eu anomalies (δEu=0.13-0.25) and exhibit right-inclined patterns with LREE enrichment but HREE depletion. Mineralogy and geochemistry of the rocks show an affinity to aluminous A-type granite, similar to other Late Cretaceous A-type granites such as the Rongyicuo, Lianlong and Ruorolong granites in the Yidun island arc belt. Zircon Hf isotopic compositions of the Xiasai granite are characterized by εHf(t) values varying from 2.7 to 0.6 and the two-stage model ages (TDM2) of 925 Ma to 1095 Ma, implying that different source materials have contributed to the magma genesis. Integrated geological, geochemical and isotopic data suggest that the Xiasai A-type granite is most likely generated via a two-stage process, including formation of parental magma by mixing of an asthenosphere-derived magma and a crustal-derived felsic magma in the deep crust, followed by intensive magmatic differentiation of the parental magma. These granites are likely to have been generated in a post-collisional extensional tectonic setting related to arc-continent collision during the Early Cretaceous.

参考文献/References:

何显刚, 李淑慧, 谢恩顺. 2004. 四川巴塘砂西银铅锌矿床特征与找矿远景. 四川地质学报, 24(2): 77–81.
侯增谦, 曲晓明, 周继荣, 杨岳清, 黄典豪, 吕庆田, 唐绍华, 余金杰, 王海平, 赵金花. 2001. 三江地区义敦岛弧碰撞造山过程: 花岗岩记录. 地质学报, 75(4): 484–497.
侯增谦, 杨岳清, 曲晓明, 黄典豪, 吕庆田, 王海平, 余金杰, 唐绍华. 2004. 三江地区义敦岛弧造山带演化和成矿系统. 地质学报, 78(1): 109–120.
贾小辉, 王强, 唐功建. 2009. A型花岗岩的研究进展及意义. 大地构造与成矿学, 33(3): 465–480.
廖远安, 郑裕民. 1986. 川西高原前震旦系恰斯群简介. 中国区域地质, 5(3): 271–275.
刘权. 2003. 四川夏塞银多金属矿床地质特征及成因. 矿床地质, 22(2): 121–128.
邱检生, 王德滋, 彭亚鸣, 周金城. 1996. 浙江舟山桃花岛碱性花岗岩的岩石学和地球化学特征及成因探讨. 南京大学学报, 32(1): 80–89.
邱检生, 蟹泽聪史, 王德滋. 2000. 浙江苍南瑶坑碱性花岗岩的地球化学及其成因类型. 岩石矿物学杂志, 19(2): 97–105.
曲晓明, 侯增谦, 周书贵, 唐绍华. 2002. 川西连龙含锡花岗岩的时代与形成构造环境. 地球学报, 23(4): 223–228.
王冬兵, 孙志明, 尹福光, 王立全, 王保弟, 张万平. 2012. 扬子地块西缘河口群的时代: 来自火山岩锆石LA-ICP-MS U-Pb年龄的证据. 地层学杂志, 36(3): 630–635.
王强, 赵振华, 熊小林. 2000. 桐柏-大别造山带燕山晚期A型花岗岩的厘定. 岩石矿物学杂志, 19(4): 297–306.
王全伟, 王康明, 阚泽忠, 付小芳. 2008. 川西地区花岗岩及其成矿系列. 北京: 地质出版社: 1–305.
应汉龙, 王登红, 付小方. 2006. 四川巴塘夏塞花岗岩和银多金属矿床年龄及硫、铅同位素组成. 矿床地质, 25(2): 135–146.
周家云, 毛景文, 刘飞燕, 谭洪旗, 沈冰, 朱志敏, 陈家彪, 罗丽萍, 周雄, 王越. 2011. 扬子地台西缘河口群钠长岩锆石SHRIMP年龄及岩石地球化学特征. 矿物岩石, 31(3): 66–73.
邹光富, 郑荣才, 胡世华, 陈才金, 蒋洪昌, 伍洪邦. 2008. 四川巴塘县夏塞银多金属矿床特征. 成都理工大学学报(自然科学版), 35(1): 93–102.
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1–2): 243–258.
Blichert-Toft J, Chauvel C and Albarède F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248–260.
Chappell B W and White A J R. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83: 1–26.
Collins W J, Beams S D, White A J R and Chappell B W. 1982. Nature and origin of A-type granites with partic?ular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200.
Eby G N. 1992. Chemical subdivision of the A-type granit?oids: Petrogenetic and tectonic implications. Geology, 20(7): 641–644.
Foley S F, Barth M G and Jenner G A. 2000. Rutile/melt partition coefficients for trace elements and an assess?ment of the influedce of rutile on the trace element characteristics of subduction zone magmas. Geochim?ica et Cosmochimica Acta, 64(5): 933–938.
F?rster H J, Tischendorf G and Trumbull R B. 1997. An evaluation of the Rb vs. (Y+Nb) discrimination diagr?am to infer tectonic setting of silicic igneous rocks. Lithos, 40(2–4): 261–293.
Griffin W L, Belousova E A and Shee S. 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precam?brian Research, 131(3–4): 231–282.
Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O’Reilly S Y and Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC- ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147.
Harris N B W, Pearce J A and Tindle A G. 1986. Geochemical characteristics of collision-zone magma?tism. Geological Society, London, Special Publications, 19: 67–81.
Hong D W, Wang S G, Han B F and Jin M Y. 1996. Post- oro-genic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere. Journal of Southeast Asian Earth Sciences, 13(1): 13–27.
Hoskin P W O and Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 8(4): 423–439.
Hu Z C, Liu Y S, Gao S, Liu W G, Zhang W, Tong X R, Lin L, Zong K Q, Li M, Chen H H, Zhou L and Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27: 1391–1399.
King P L, White A J R and Chappell B W. 1997. Charact-erization and origin of aluminous A type granites of the Lachlan Fold Belt, southeastern Australia. Journal of Petrology, 38(3): 371–391.
Li X H, Chung S L, Zhou H W, Lo C H, Liu Y and Chen C H. 2004. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi: 40Ar/39Ar dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China. Geological Society, London, Special Publications, 226(1): 193–215.
Litvinovsky B A, Jahn B M, Zanvilevich A N, Saunders A, Poulain S, Kuzmin D V, Reichow, M K and Titov A V. 2002. Petrogenesis of syenite-granite suites from the Bryansky Complex (Transbaikalia, Russia): Implicat?ions for the origin of A-type granitoid magmas. Chem?ical Geology, 189(1–2): 105–133.
Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q and Wang D B. 2010. Continental and Oceanic Crust Recycling-indu?ced Melt-peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1–2): 537–571.
Loiselle M and Wones D. 1979. Characteristics and origin of anorogenic granites. Geological of Society of America, 1979, 11(7): 468.
Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of American Bulletin, 101: 635–643.
Pearce J A. 1996. Source and settings of granitic rocks. Episodes, 19(4): 120-125.
Qu X M, Hou Z Q and Zhou S G. 2002. Geochemical and Nd, Sr Isotopic Study of the Post-Orogenic Granites in the Yidun Arc Belt of Northern Sanjiang Region, Southw-estern China. Resource Geology, 52(2): 163–172.
Rollinson H R. 1993. Using geochemical data: evaluation, presentation, interpretation. Essex: Longman Scientific & Technical: 1–352.
Scherer E, Munker C and Mezger K. 2001. Calibration of the lutetium-hafnium clock. Science, 293: 683–687.
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313–345.
Vervoort J D and Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63(3–4): 533–556.
Watson E B, Wark D A and Thomas J B. 2006. Crystalli?zation Thermometers for Zircon and Rutile. Contrib?utions to Mineralogy and Petrology, 151(4): 413–433.
Whalen J B, Currie K L and Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419.
Wu F Y, Jahn B M, Wilde S A, Lo C H, Yui T F, Lin Q, Ge W C and Sun D Y. 2003. Highly fractionated I-type granites in NE China (I): Geochronology and petrog?enesis. Lithos, 66(3–4): 241–273.
Yang J H, Wu F Y, Chung S L, Wilde S A and Chu M F. 2006. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89(1–2): 89–106.
Yuan H L, Wu F Y, Gao S, Liu X M, Xu P and Sun D Y. 2003. Determination of U-Pb age and rare earth elem?ent concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin, 48: 2411–2421.

相似文献/References:

[1]李长民,李拓,邓晋福.冀西北后沟金矿田脆韧性剪切带年代学新证据: 来自LA-ICP-MS锆石U-Pb年龄的发现.大地构造与成矿学,2012.36(2):157.
 LI Changmin,LI Tuo,DENG Jinfu.LA-ICP-MS Zircon U-Pb Age of the Brittle-Ductile Shear Zones in Hougou Gold Orefield, Northwestern Hebei Province.Geotectonica et Metallogenia,2012.38(4):157.
[2]王崴平,陈毓川,王登红.赣南兴国县良村花岗岩锆石LA-ICP-MS U-Pb 年代学、岩石地球化学与成岩机制研究.大地构造与成矿学,2014.38(2):347.
 WANG Weiping,CHEN Yuchuan,WANG Denghong and CHEN Zhenyu.Zircon LA-ICP-MS U-Pb Dating and Petrogeochemistry of the Liangcun Granites and Their Petrogenesis, South Jiangxi.Geotectonica et Metallogenia,2014.38(4):347.
[3]汪校锋,李德威,杜远生.华北南缘高山河组和云梦山组中解体的次火山岩: 锆石U-Pb定年.大地构造与成矿学,2015.39(5):919.doi:10.16539/j.ddgzyckx.2015.05.014
 WANG Xiaofeng,LI Dewei,DU Yuansheng.Zircon U-Pb Dating of the Sub-Volcanic Rocks Dismantled from Gaoshanhe and Yunmengshan Formations in Southern Margin of North China Craton.Geotectonica et Metallogenia,2015.38(4):919.doi:10.16539/j.ddgzyckx.2015.05.014
[4]孟元库,许志琴,陈希节.藏南冈底斯中段谢通门始新世复式岩体锆石U-Pb年代学、Hf同位素特征及其地质意义.大地构造与成矿学,2015.39(5):933.doi:10.16539/j.ddgzyckx.2015.05.015
 MENG Yuanku,XU Zhiqin,CHEN Xijie.Zircon Geochronology and Hf Isotopic Composition of Eocene Granite Batholith from Xaitongmoin in Middle Gangdise and its Geological Significance.Geotectonica et Metallogenia,2015.38(4):933.doi:10.16539/j.ddgzyckx.2015.05.015
[5]周 云,梁新权,梁细荣.海南白垩纪六罗村组火山岩的年代学、地球化学特征及其大地构造意义.大地构造与成矿学,2015.39(5):903.doi:10.16539/j.ddgzyckx.2015.05.013
 ZHOU Yun,LIANG Xinquan,LIANG Xirong.Geochronology and Geochemistry of Cretaceous Volcanic Rocks from Liuluo Formation in Hainan Island and Their Tectonic Implications.Geotectonica et Metallogenia,2015.38(4):903.doi:10.16539/j.ddgzyckx.2015.05.013
[6]宋 昊,徐争启,倪师军.广西摩天岭岩体对江南造山带西南段构造演化的响应: 来自新元古代花岗岩锆石U-Pb年代学证据.大地构造与成矿学,2015.39(6):1156.doi:10.16539/j.ddgzyckx.2015.06.015
 SONG Hao,XU Zhengqi.Response of the Motianling Granitic Pluton in North Guangxi to the Tectonic Evolution in the Southwestern Section of the Jiangnan Orogenic Belt: Constraints from Neoproterozoic Zircon Geochronology.Geotectonica et Metallogenia,2015.38(4):1156.doi:10.16539/j.ddgzyckx.2015.06.015
[7]杨建国,王 磊,谢 燮.甘肃北山怪石山铜镍矿化基性-超基性杂岩体锆石SHRIMP U-Pb同位素定年及其意义.大地构造与成矿学,2016.4(1):098.doi:10.16539/j.ddgzyckx.2016.01.009
 YANG Jianguo,WANG Lei,XIE Xie.SHRIMP Zircon U-Pb Age and its Signification of Guaishishan Mafic-ultramafic Complex in Beishan Mountains, Gansu Province.Geotectonica et Metallogenia,2016.38(4):098.doi:10.16539/j.ddgzyckx.2016.01.009
[8]李 亮,孙景贵*,郭 维.鹤岗北部地区黑龙江岩群的构造属性: 来自岩石地球化学、锆石U-Pb定年和Hf同位素的制约.大地构造与成矿学,2016.4(5):1014.doi:10.16539/j.ddgzyckx.2016.05.010
 LI Liang,SUN Jinggui*,GUO Wei and HAN Jilong.Tectonic Attribute of Heilongjiang Metamorphic Rocks in the Northern Part of Hegang Area, NE China: Constrains from Geochemistry, Zircon U-Pb Dating and Hf Isotopic Composition.Geotectonica et Metallogenia,2016.38(4):1014.doi:10.16539/j.ddgzyckx.2016.05.010
[9]徐扬,杨坤光*,李日辉.北苏鲁变辉长岩锆石U-Pb年龄和Lu-Hf同位素 组成及其对源区的指示.大地构造与成矿学,2017.41(2):338.doi:10.16539/j.ddgzyckx.2017.02.010
 XU Yang,YANG Kunguang*,LI Rihui.Zircon U-Pb Ages and Lu-Hf Isotopic Compositions of Meta-gabbro in the Northern Sulu UHP Metamorphic Belt and its Provenance.Geotectonica et Metallogenia,2017.38(4):338.doi:10.16539/j.ddgzyckx.2017.02.010
[10]陈志洪,赵 玲*,匡福祥.长江中下游地区怀宁盆地侵入岩的锆石U-Pb年代学和Hf同位素研究.大地构造与成矿学,2017.41(3):551.doi:10.16539/j.ddgzyckx.2017.03.009
 CHEN Zhihong,ZHAO Ling*,KUANG Fuxiang.Zircon U-Pb Dating and Hf Isotopic Study on the Intrusions of the Huaining Basin in the Lower Yangtze River Belt, Central Eastern China.Geotectonica et Metallogenia,2017.38(4):551.doi:10.16539/j.ddgzyckx.2017.03.009

备注/Memo

备注/Memo:
收稿日期: 2013-08-29; 改回日期: 2013-12-21
项目资助: 国家自然科学基金项目(批准号: 41202054)和中国地质大学(武汉)中央高校基本科研业务费专项基金(编号: CUG110832, CUG12?0702)联合资助。
第一作者简介: 李艳军(1982– ), 男, 讲师, 主要从事矿床地球化学、成矿规律与成矿预测教学和研究。Email: liyanjun21023@163.com
更新日期/Last Update: 1900-01-01