[1]田 坎,郑有业,高顺宝.2018.西藏帮布勒矽卡岩型Pb-Zn-Cu-Fe矿床流体来源及演化: 来自流体包裹体及稳定同位素的制约.大地构造与成矿学,42(6):1027-1045.doi:10.16539/j.ddgzyckx.2018.06.007
 TIAN Kan,ZHENG Youye,GAO Shunbao.2018.Fluid Source and Evolution of the Bangbule Skarn Pb-Zn-Cu-Fe Deposit in Tibet: Constraints from Fluid Inclusions and Stable Isotopes.Geotectonica et Metallogenia,42(6):1027-1045.doi:10.16539/j.ddgzyckx.2018.06.007
点击复制

西藏帮布勒矽卡岩型Pb-Zn-Cu-Fe矿床流体来源及演化: 来自流体包裹体及稳定同位素的制约
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2018年42卷06期
页码:
1027-1045
栏目:
构造地质与成矿学
出版日期:
2018-12-30

文章信息/Info

Title:
Fluid Source and Evolution of the Bangbule Skarn Pb-Zn-Cu-Fe Deposit in Tibet: Constraints from Fluid Inclusions and Stable Isotopes
文章编号:
1001-1552(2018)06-1027-019
作者:
田 坎1 郑有业12* 高顺宝2 伍登浩3 姜晓佳4
1.中国地质大学(武汉) 资源学院, 湖北 武汉 430074; 2.中国地质大学(武汉) 地质调查研究院, 湖北 武汉 430074; 3.贵州省水利水电勘测设计研究院, 贵州 贵阳 550002; 4.中冶集团 武汉勘察研究院有限公司, 湖北 武汉 430080
Author(s):
TIAN Kan1 ZHENG Youye12* GAO Shunbao2 WU Denghao3 and JIANG Xiaojia4
1. Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, Hubei, China; 2. Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China; 3. Guizhou Survey & Design Research Institute for Water Resources and Hydropower, Guiyang 550002, Guizhou, China; 4. Wuhan Surveying Research Institute Co., Ltd. of MCC, Wuhan 430080, Hubei, China
关键词:
成矿流体 C-H-O同位素 矽卡岩矿床 帮布勒 西藏
Keywords:
ore-forming fluid C-H-O isotopes skarn deposit Bangbule Tibet
分类号:
P612
DOI:
10.16539/j.ddgzyckx.2018.06.007
文献标志码:
A
摘要:
位于冈底斯?念青唐古拉Pb-Zn-Cu-Fe-Ag成矿带最西端的帮布勒矿床为一新发现的大型Pb-Zn-Cu-Fe矿床。该矿床是一个典型的矽卡岩型矿床, 发育早期和晚期矽卡岩阶段、早期和晚期硫化物阶段以及表生氧化物阶段5个成矿阶段。除表生氧化物阶段外, 其他成矿阶段的流体包裹体均以富液两相(VL型)为主, 可见少量含子矿物三相(SVL型)和富气两相(LV型)包裹体。各阶段的流体包裹体均一温度范围分别为: 529~580 ℃、365~498 ℃、173~386 ℃和113~366 ℃。早期矽卡岩阶段的流体包裹体盐度为4.5% NaCleqv; 晚期矽卡岩阶段盐度平均为43.4% NaCleqv(SVL型)和4.16% NaCleqv (VL型); 而早期和晚期硫化物阶段盐度较低, 主要集中于4.0%~10.0% NaCleqv和0~11.0% NaCleqv。矽卡岩期的流体密度较高, 石英?硫化物期的流体密度较小, 从早期矽卡岩阶段到晚期石英?硫化物阶段依次为1.40 g/cm3、1.39~1.41 g/cm3、1.01~1.19 g/cm3及1.00~1.18 g/cm3。流体捕获压力整体亦显示降低的趋势, 分别为45.26 MPa、32.74 MPa、26.30 MPa及18.83 MPa。推算成矿深度较浅, 在1.5~2.5 km之间, 与矿区内石英斑岩体所显示的浅成岩深度一致。C-H-O同位素结果显示矽卡岩期具有岩浆流体的特征, 石英?硫化物晚期逐渐过渡为以大气降水为主。综上所述, 帮布勒早期成矿流体具有高温、中高盐度的岩浆水特征, 而在石英?硫化物期由于大量大气降水的混入, 使得成矿流体的温度、盐度等明显降低, 最后在有利的构造位置上, 由于流体混合、局部减压沸腾、温度降低等共同作用使金属硫化物沉淀成矿。
Abstract:
The Bangbule Pb-Zn-Cu-Fe deposit is a newly discovered deposit in the western Gangdese-Nyain?qentanglha Metallogenic Belt. Orebodies mainly occur in the contacts between the quartz porphyry and the marble, limestone and sandstone, and the interlayer structures of the marble and limestone, interfaces of different lithology, and fractures as well. The ore forming processes can be divided into three epochs (skarn, quartz-sulfide, and supergene) and five stages (early skarn, late skarn, early sulfide, late sulfide, and supergene stage). Fluid inclusions in the different ore-forming stages are mainly liquid-rich and gas-liquid inclusions (type VL), with minor daughter mineral containing inclusions (type SVL) and gas-rich phase gas-liquid inclusions (type LV). The homogenization temperatures of the early skarn, late skarn, early sulfide and late sulfide stages are in ranges of 529 - 580 ℃, 365 - 498 ℃, 173 - 386 ℃, and 113 - 366 ℃, respectively. The salinity of the early skarn stage is 4.50% NaCleqv. In the late skarn stage, the average salinities of SVL-type and VL-type fluid inclusion are 43.4% NaCleqv and 4.16% NaCleqv, respectively. The peak values of salinity in the early and late sulfide are 4.0% - 10.0% NaCleqv and 0 - 11.0% NaCleqv, respectively. The average densities of fluids are 1.40 g/cm3, 1.39 - 1.41 g/cm3, 1.01 - 1.19 g/cm3, and 1.00 - 1.18 g/cm3, respectively. The average pressures are 45.26 MPa, 32.74 MPa, 26.30 MPa, and 18.83 MPa, respectively. The ore-forming depth ranges from 0.82 km to 4.34 km (average 1.97 km), with the peak values between 1.5 km and 2.5 km, which belongs to shallow mineralization depth and is consistent with the depth of the quartz porphyry. The C-H-O isotopes show that magmatic fluid probably played an important role in the skarn stage. In the quartz-sulfide stage, the fluid mixed with large quantity of meteoric water, and gradually shifted to meteoric water during the late quartz-sulfide stage. In conclusion, during the early stages, the ore-forming fluid was dominated by magmatic water, which was characterized by low acidity, high temperature, high salinity, and high oxygen fugacity. During the quartz-sulfide phase, the temperature and salinity of ore-forming fluid decreased obviously owing to mixing with a large amount of meteoric water. Finally, in the favorable structure position, the pressure reducing and cooling of the ore-forming fluid gave rise to massive metal sulfide precipitation.

参考文献/References:

东前, 杜杨松, 苗文韬, 曹毅, 庞振山, 曾锐, 王剑波. 2015. 江西武山矽卡岩型铜矿床成矿流体演化及其成矿意义. 矿床地质, 34(5): 929-947.
范淑芳, 曲晓明, 宋扬, 辛洪波. 2015. 西藏尼雄铁矿成矿花岗岩成因及其对成矿构造背景的启示. 大地构造与成矿学, 39(2): 286-299.
高顺宝. 2015. 西藏冈底斯西段铜铁多金属成矿作用与找矿方向. 武汉: 中国地质大学(武汉)博士学位论文: 1-212.
高顺宝, 郑有业, 田立明, 张众, 屈文俊, 刘敏院, 郑海涛, 郑磊, 朱继华. 2012. 西藏查个勒铜铅锌矿成岩成矿时代及意义. 地球科学, 37(3): 507-514.
顾雪祥, 刘丽, 董树义, 章永梅, 李科, 李葆华. 2010. 山东沂南金铜铁矿床中的液态不混溶作用与成矿: 流体包裹体和氢氧同位素证据. 矿床地质, 29(1): 43-57.
黄鹏程. 2016. 西藏帮布勒铅锌铜铁矿床岩体地质地球化学特征及其与成矿的关系. 武汉: 中国地质大学(武汉)硕士学位论文: 1-75.
李强, 王雷, 毛建辉, 左琼华, 孟石荣. 2013. 易门狮子山铜矿流体包裹体研究. 大地构造与成矿学, 37(1): 57-64.
刘斌. 2001. 中高盐度NaCl-H2O包裹体的密度式和等容式及其应用. 地质论评, 47(6): 617-622.
刘斌, 段光贤. 1987. NaCl-H2O溶液包裹体的密度式和等容式及其应用. 矿物学报, 7(4): 59-66.
刘长征, 李世金, 陈岳龙, 李大鹏, 高永旺, 郭海明, 李连松, 汪元奎. 2015. 羌塘地区多才玛铅锌矿床流体包裹体特征及成因类型. 大地构造与成矿学, 39(4): 658-669.
刘家军, 何明勤, 李志明, 刘玉平, 李朝阳, 张乾, 杨伟光, 杨爱平. 2004. 云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义. 矿床地质, 23(1): 1-10.
卢焕章. 1984. 液体包裹体的初熔温度及其地质意义. 华东地质学院学报, (1): 61-65.
卢焕章. 2004. 流体包裹体. 北京: 科学出版社: 183.
马芳, 蒋少涌, 姜耀辉, 王汝成, 凌洪飞, 倪培. 2006. 宁芜地区玢岩铁矿Pb同位素研究. 地质学报, 80(2): 279-286.
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533.
钱建平, 黄德阳, 谢彪武, 陈宏毅, 赵小星. 2013. 西藏谢通门县斯弄多铅锌矿区矿床地质特征和构造地球化学找矿研究. 大地构造与成矿学, 37(1): 29-41.
邵洁涟. 1990. 金矿找矿矿物学. 北京: 中国地质大学出版社: 1-150.
孙国平, 郑有业, 徐净, 李淼, 王彦峰. 2018. 西藏恰功矽卡岩铁矿床成矿流体研究: 对Fe-Pb矿化的约束. 地球科学, 出版中.
徐净. 2017. 西藏念青唐古拉古近纪矽卡岩型铁铜铅锌矿床成因机制与成矿模式. 武汉: 中国地质大学(武汉)博士学位论文.
徐林刚, 毛景文, 杨富全, 叶会寿, 郑建民, 李建国, 蔡永彪, 查小玲, 高建京. 2007. 新疆蒙库铁矿床矽卡岩矿物学特征及其意义. 矿床地质, 26(4): 455-463.
闫寒. 2015. 滇西中甸红山矽卡岩型Cu矿床成矿流体演化. 北京: 中国地质大学(北京)硕士学位论文: 1-68.
于玉帅, 高原, 杨竹森, 田世洪, 刘英超, 曹圣华, 胡为正, 郄海满. 2011. 西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征. 岩石学报, 27(7): 1949-1960.
余泽章. 2016. 西藏帮布勒铅锌铜铁矿床矿物学特征及成因研究. 武汉: 中国地质大学(武汉)硕士学位论文: 1-92.
张道涵, 魏俊浩, 付乐兵, 王大钊, 刘金科. 2017. 贺兰山北段牛头沟金矿床成矿流体和成矿物质来源: 来自H-O-S-Pb同位素的证据. 大地构造与成矿学, 41(2): 325-337.
张理刚. 1985. 稳定同位素在地质科学中的应用. 西安: 陕西科学技术出版社: 19-21.
张晓倩, 朱弟成, 赵志丹, 王立全, 黄建村, 莫宣学. 2010. 西藏措勤尼雄岩体的岩石成因及其对富Fe成矿作用的潜在意义. 岩石学报, 26(6): 1793-1804.
张众. 2012. 西藏措勤地区铁矿床地质特征及成因分析——以尼雄、邦布勒矿床为例. 武汉: 中国地质大学(武汉)硕士学位论文: 1-58.
赵晓燕, 杨竹森, 周金胜, 裴英茹, 张雄, 徐玉涛. 2015. 西藏邦铺斑岩矽卡岩矿床成矿流体特征——来自流体包裹体及C-H-O同位素的制约. 岩石矿物学杂志, 34(4): 475-492.
赵一鸣. 1990. 中国矽卡岩矿床. 北京: 地质出版社: 1- 328.
周云飞, 徐九华, 单立华. 2016. 巴里坤小加山钨矿床的成矿流体及矿床成因. 大地构造与成矿学, 40(1): 86-97.
朱江, 吕新彪, 彭三国, 龚银杰, 曹晓峰. 2013. 甘肃花牛山金矿床成矿年代、流体包裹体及稳定同位素研究. 大地构造与成矿学, 37(4): 641-652.
Baker T and Lang J R. 2003. Reconciling ?uid inclusion types, ?uid processes, and ?uid sources in skarns: An example from the Bismark Deposit, Mexico. Mineral Deposita, 38(4): 474-495.
Baker T, Van Achterberg E, Ryan C G and Lang J R. 2004. Composition and evolution of ore ?uids in a magmatic- hydrothermal skarn deposit. Geology, 32(2): 117-120.
Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683-684.
Bottinga Y and Javoy M. 1975. Oxygen isotope partitioning among the minerals in igneous and metamorphic rocks. Reviews of Geophysics, 13(2): 401-418.
Ciobanu C L and Cook N J. 2004. Skarn textures and a case study: The Ocna de Fier-Dognecea orefield, Banat, Romania. Ore Geology Reviews, 24: 315-370.
Clayton R N and Mayeda T K. 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmo?chimica Acta, 27(1): 43-52.
Clayton R N, O’Neil J R and Mayeda T K. 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research, 77(17): 3057-3067.
Coleman M L, Shepherd T J, Durham J J, Rouse J E and Moore G R. 1982. Reduction of water with zinc for hydrogen isotope analysis. Analytical Chemistry, 54(6): 993-995.
Cook N J and Ciobanu C L. 2001. Paragenesis of Cu-Fe ores from Ocna de Fier-Dognecea (Romania), typifying fluid plume mineralisation in a proximal skarn setting. Mineralogical Magazine, 65(3): 351-372.
Einaudi M T, Meinert L D and Newberry R J. 1981. Skarn deposits. Economic Geology, 75th Anniversary Volume: 317-391.
Fan H R, Xie Y H, Wang K Y and Wilde S A. 2004. Methane-rich ?uid inclusions in skarn near the giant REE-Nb-Fe deposit at Bayan Obo, northern China. Ore Geology Reviews, 25(3): 301-309.
Fournier R O. 1992. The in?uences of depth of burial and the brittle-ductile transition on the evolution of magmatic ?uids. Report Geological Survey of Japan, 277: 57-59.
Horita J, Cole D R and Wesolowski D J. 1995. The activity- composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: III. Vapor-liquid water equili-bration of NaCl solutions to 350 ℃. Geochimica et Cosmochimica Acta, 59(6): 1139-1151.
Horita J and Wesolowski D J. 1994. Liquid-vapor fractio?nation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochimica et Cosmochimica Acta, 58(16): 3425-3437.
Hurai V, Huraiovà M, Slobodnik M and Thomas R. 2015. Geofluids: Developments in Microthermometry, Spectro-scopy, Thermodynamics, and Stable Isotopes. Elsevier: 1-489.
Koděra P, Lexa J and Fallick A E. 2010. Formation of the Vysoká-Zlatno Cu-Au skarn-porphyry deposit, Slovakia. Mineral Deposita, 45(8): 817-843.
Mao J W, Wang Y T, Ding T P, Chen Y C, Wei J X and Yin J Z. 2002. Dashuigou tellurium deposit in Sichuan Province, China: S, C, O, and H isotope data and their implications on hydrothermal mineralization. Resource Geology, 52(1): 15-23.
Meinert L D, Hedenquist J W, Satoh H and Matsuhisa Y. 2003. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic ?uids. Economic Geology, 98(1): 147-156.
O’Neil J R, Clayton R N and Mayeda T K. 1969. Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics, 51(12): 5547-5558.
Seward T M and Barnes H L. 1997. Metal transport by hydrothermal ore fluids // Barnes H L. Geochemistry of Hydrothermal Ore Deposits. New York: John Wiley & Sons: 435-486.
Shmulovich K I, Landwehr D, Simon K and Heinrich W. 1999. Stable isotope fractionation between liquid and vapour in water-salt systems up to 600 ℃. Chemical Geology, 157(3): 343-354.
Shu Q H, Lai Y, Sun Y, Wang C and Meng S. 2013. Ore genesis and hydrothermal evolution of the Baiyinnuo’er zinc-lead skarn deposit, Northeast China: Evidence from isotopes (S, Pb) and ?uid inclusions. Economic Geology, 108(4): 835-860.
Soloviev S G, Kryazhev S G and Dvurechenskaya S S. 2013. Geology, mineralization, stable isotope geochemistry, and ?uid inclusion characteristics of the Novogodnee- Monto oxidized Au-(Cu) skarn and porphyry deposit, Polar Ural, Russia. Mineral Deposita, 48(5): 603-627.
Sterner S M, Hall D L and Bodnar R J. 1988. Synthetic fluid inclusions — V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions. Geo-chimica et Cosmochimica Acta, 52(5): 989-1005.
Taylor H P. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69(6): 843-883.
Wilkinson J J. 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1): 229-272.
Xu J, Zheng Y Y, Sun X and Shen Y H. 2016. Alteration and mineralization at the Zhibula Cu skarn deposit, Gangdese belt, Tibet. Ore Geology Reviews, 75: 304-326.
Zhou J, Yang Z S, Hou Z Q, Liu Y, Zhao X, Zhang X and Ma W. 2017. The geochemical evolution of syncollisional magmatism and the implications for significant magmatic- hydrothermal lead-zinc mineralization (Gangdese, Tibet). Lithos, 288: 143-155.

相似文献/References:

[1]刘宝山,吕军.黑河市三道湾子金矿床地质、地球化学和成因探讨.大地构造与成矿学,2006.3(4):481.
 LIU Baoshan and LU Jun.GEOLOGICAL, GEOCHEMICAL AND GENETIC STUDY OF THE SANDAOWANZI QUARTZ VEINTYPE GOLD DEPOSIT IN HEIHE CITY, HEILONGJIANG PROVINCE.Geotectonica et Metallogenia,2006.42(6):481.
[2]张亚雄.浙江遂昌地区金矿床矿物包裹体研究.大地构造与成矿学,1995.19(3):274.
 ZHANG Yaxiong.STUDY ON THE MINERAL INCLUSIONS FROM THE GOLD ORE DEPOSITS,SUICHANG ORE FIELD,ZHEJIANG PROVINCE.Geotectonica et Metallogenia,1995.42(6):274.
[3]夏勇.琼西戈枕剪切带中成矿流体演化与金成矿.大地构造与成矿学,1996.2(3):220.
 XIA Yong.THE EVOLUTION OF THE ORE-FORMING FLUID AND GOLD MINERALIZATION IN THE GEZHEN SHEAR ZONE, WESTERN HAINAN, CHINA.Geotectonica et Metallogenia,1996.42(6):220.
[4]徐启东,钟增球,周汉文.小秦岭地区金矿化与花岗岩浆活动的关系──流体标型特征提供的依据.大地构造与成矿学,1998.22(1):035.
 XU Qidong,ZHONG Zenqiu,ZHOU Hanwen.RELATIONSHIP BETWEEN GOLD MINERALIZATION AND ACTIVITY OF GRANITIC MAGMA IN XIAOQINLING AREA: EVIDENCES FROM TYPOMORPHIC PECULIARITIES OF FLUIDS.Geotectonica et Metallogenia,1998.42(6):035.
[5]邹海洋,陈松岭,戴塔根.陕西旬阳淋湘金矿地质特征和成矿流体属性.大地构造与成矿学,2000.24(1):065.
 ZOU Hai-yang,CHEN Song-ling,DAI Ta-gen.GEOLOGY AND ORE-FORMING FLUID TYPES OF THELINXIANG GOLD DEPOSIT, XUNYONG, SHANXI.Geotectonica et Metallogenia,2000.42(6):065.
[6]李峰,庄凤良.云南思茅大平掌铜多金属矿床流体包裹体特征及其成矿意义.大地构造与成矿学,2000.24(3):237.
 LI Feng,ZHUANG Feng liang.FLUID INCLUSION CHARACTERISTICS AND ITS METALLOGENIC SIGNIFICANCE OF THE DAPINGZHANG CU- POLYMETAL DEPOSIT IN SIMAO,WESTERN YUNNAN.Geotectonica et Metallogenia,2000.42(6):237.
[7]李建威,李紫金,傅昭仁.鹿井铀矿床成矿流体演化的地球化学模拟.大地构造与成矿学,2000.24(3):266.
 LI Jian wei,CHEN Xiao dong,LI Zi jin.GEOCHEMICAL MODELING FOR THE EVOLUTION OF MINERALIZING FLUIDS OF THE LUJING URANIUM DEPOSIT, SE CHINA.Geotectonica et Metallogenia,2000.42(6):266.
[8]黄智龙,李文博,陈进.云南会泽超大型铅锌矿床C、O同位素地球化学.大地构造与成矿学,2004.28(1):053.
 HUANG Zhilong,LI Wenbo,CHEN Jin.CARBON AND OXYGEN ISOTOPE GEOCHEMISTRY OF THE HUIZE SUPERLARGE Pb-Zn ORE DEPOSITS IN YUNNAN PROVINCE.Geotectonica et Metallogenia,2004.42(6):053.
[9]滕彦国,张成江,倪师军.田湾金矿田韧性剪切带成矿构造地球化学研究.大地构造与成矿学,2001.25(1):095.
 TENG Yanguo,ZHANG Chengjiang,NI Shijun.MINERALIZATION STRUCTURE GEOCHEMISTRY ON THE DUCTILE SHEAR BELT IN TIANWAN GOLD OREFIELD.Geotectonica et Metallogenia,2001.42(6):095.
[10]李强,王雷,毛建辉.易门狮子山铜矿流体包裹体研究.大地构造与成矿学,2013.37(1):057.
 LI Qiang,WANG Lei,MAO Jianhui.Research on the Fluid Inclusions of Shizishan Copper Deposit, Yunnan.Geotectonica et Metallogenia,2013.42(6):057.

备注/Memo

备注/Memo:
收稿日期: 2017-09-09; 改回日期: 2018-03-27
项目资助: 青藏高原碰撞造山成矿系统深部结构与成矿过程(2016YFC0600300)和西藏仲巴县帮布勒地区铜多金属矿调查评价项目(12120114082301)联合资助。
第一作者简介: 田坎(1987-), 男, 博士研究生, 矿物学、岩石学、矿床学专业。Email: tillan@cug.edu.cn
通信作者: 郑有业(1962-), 男, 教授, 博士生导师, 主要从事找矿方法与勘查评价研究。Email: zhyouye@163.com
更新日期/Last Update: 2018-12-15