[1]王 超,单业华.2018.鄂西白垩纪远安盆地变形带的形成条件.大地构造与成矿学,42(6):1001-1009.doi:10.16539/j.ddgzyckx.2018.06.005
 WANG Chao and SHAN Yehua.2018.Conditions of Deformation Bands in the Cretaceous Yuan’an Basin, Western Hubei, Central China.Geotectonica et Metallogenia,42(6):1001-1009.doi:10.16539/j.ddgzyckx.2018.06.005
点击复制

鄂西白垩纪远安盆地变形带的形成条件
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2018年42卷06期
页码:
1001-1009
栏目:
构造地质学
出版日期:
2018-12-30

文章信息/Info

Title:
Conditions of Deformation Bands in the Cretaceous Yuan’an Basin, Western Hubei, Central China
文章编号:
1001-1552(2018)06-1001-009
作者:
王 超12 单业华1
1.中国科学院 广州地球化学研究所, 中国科学院边缘海与大洋地质重点实验室, 广东 广州 510640; 2.中国科学院大学, 北京 100049
Author(s):
WANG Chao12 and SHAN Yehua1
1. CAS Key Laboratory of Ocean and Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, Guangdong, China; 2. University of Chinese Academy of Science, Beijing 100049, China
关键词:
变形带 断层 风成沙丘相 孔隙度 伸展体制
Keywords:
deformation bands faults aeolian-dune facies porosity extensional regime
分类号:
P542
DOI:
10.16539/j.ddgzyckx.2018.06.005
文献标志码:
A
摘要:
鄂西远安盆地露头尺度的变形构造以中?高角度的正断层和变形带为主, 这些构造与盆地内整体上稀疏发育的正断层不同的是, 变形带呈面状分布, 密集出现在该盆地中、南部上白垩统红花套组块状砂岩中。根据沉积构造特征, 该盆地红花套组可分为两个截然不同的沉积相类型, 即风成沙丘相和河湖相。通过野外岩相填图, 发现变形带集中出现在风成沙丘相的块状砂岩中。显微X-CT表明, 风成砂岩的孔隙度平均为16%左右, 最高可达23%, 这非常有利于变形带的发育, 是造成变形带主要分布在红花套组的直接原因。晚白垩世区域伸展体制提供了大多数变形带形成所需要的应变量, 由此形成的变形带与同时形成的正断层在成因上密切相关。
Abstract:
Most macroscopic deformation structures in the Yuan’an Basin, western Hubei are medium- to high-angle normal faults and deformation bands. Unlike sparse normal faults in the basin, deformation bands are widely distributed in the massive sandstone of the Upper Cretaceous Honghuatao Formation in the central and southern parts of the basin. Two distinct facies, aeolian-dune and fluvial-lacustrine, were identified in the formation, according to sedimentary structures observed at outcrops. Field mapping shows that a vast majority of the bands occur in the aeolian-dune sandstones. Micro X-CT yields a large porosity for such sandstones, an average 16%, the maximum 23%. As such high porosity is favorable for the formation of deformation bands, and thus is likely the principal factor affects the spatial occurrence of deformation bands in the formation. The Late Cretaceous extensional regime provides necessary strain to produce genetically related deformation bands and normal faults in the rift basin.

参考文献/References:

贺其川. 2011. 沙漠沉积特征——以江陵凹陷白垩系红花套组为例. 石油天然气学报, 33(7): 24-27.
黄华, 陈柯伶. 2011. 江陵凹陷白垩系红花套组沙漠沉积特征. 特种油气藏, 18(3): 43-46.
黄建勋, 金经炜, 张淦权. 1990. 湖北省区域地质志. 北京: 地质出版社: 24-36.
江新胜, 李玉文. 1996. 中国中东部白垩纪沙漠的时空分布及其气候意义. 岩相古地理, 16(2): 42-51.
江新胜, 潘忠习, 徐金沙, 李晓勇, 谢国刚, 肖志坚. 2006. 江西信江盆地晚白垩世风成沙丘的发现及其古风向. 地质通报, 25(7): 833-838.
李群, 郭建华, 曾芳, 段海亭. 2006. 江汉盆地白垩系沉积相与沉积演化. 西南石油学院学报, 28(6): 5-8.
罗旋. 2012. 沙漠沉积相特征分析研究. 武汉: 长江大学硕士学位论文.
乔彦波, 单业华, 田野, 聂冠军. 2011. 鄂西白垩纪远安盆地的变形带构造. 地质科学, 46(1): 181-193.
乔彦波, 单业华, 田野, 聂冠军, 孙蓓. 2012. 鄂西远安白垩纪盆地的宏观构造变形机制. 大地构造与成矿学, 36(1): 44-55.
舒良树, 周新民. 2002. 中国东南部晚中生代构造作用. 地质论评, 48(3): 249-260.
田蜜, 施炜, 李建华, 渠洪杰. 2010. 江汉盆地西北部断陷带构造变形分析与古应力场演化序列. 地质学报, 84(2): 159-170.
王成善, 胡修棉. 2005. 白垩纪世界与大洋红层. 地学前缘, 12(2): 11-22.
吴正. 1987. 风沙地貌学. 北京: 科学出版社: 10-23.
赵宗举, 俞广, 朱琰, 周进高, 屠小龙. 2003. 中国南方大地构造演化及其对油气的控制. 成都理工大学学报(自然科学版), 30(2): 155-168.
Antonellini M A, Aydin A and Pollard D D. 1994. Micro-structure of deformation bands in porous sandstones at Arches National Park, Utah. Journal of Structural Geology, 16(7): 941-959.
Arribas M E, Rodríguez-López J P, Meléndez N, Soria A R and de Boer P L. 2012. Giant calcite concretions in aeolian dune sandstones; sedimentological and architectural controls on diagenetic heterogeneity, mid-Cretaceous Iberian Desert System, Spain. Sedimentary Geology, 243-244: 130-147.
Aydin A. 1978. Small faults formed as deformation bands in sandstone. Pure and Applied Geophysics, 116: 913-930.
Aydin A and Johnson A M. 1978. Development of faults as zones of deformation bands and as slip surfaces in sandstone. Pure and Applied Geophysics, 116: 931- 942.
Crowley T J and North G R. 1991. Paleoclimatology. New York: Oxford University: 155-171.
Davis G H. 1999. Structural geology of the Colorado Plateau Region of Southern Utah, with special emphasis on deformation bands. Geological Society of America, 342: 1-157.
Fossen H and Bale A. 2007. Deformation bands and their influence on fluid flow. AAPG Bulletin, 91(12): 1685- 1700.
Fossen H, Schultz R A, Shipton Z K and Mair K. 2007. Deformation bands in sandstone: A review. Journal of the Geological Society, 164(4): 755-769.
Jiang X S, Pan Z X and Fu Q P. 2001a. Primary study on pattern of general circulation of atmosphere before uplift of the Tibetan Plateau in Eastern Asia. Science in China (Series D), 44(8): 680-688.
Jiang X S, Pan Z X and Fu Q P. 2001b. Regularity of paleowind directions of the Early Cretaceous desert in Ordos Basin and climatic significance. Science in China (Series D), 44(1): 24-34.
Maruyama S and Send T. 1986. Orogeny and relative plate motions: Example of the Japanese Islands. Tectonophysics, 127(3): 305-329.
Mckee E D. 1966. Structures of dunes at White Sands National Monument, New Mexico (and a comparison with structures of dunes from other selected areas). Sedimentology, 7(1): 3-69.
Olsson W A, Lorenz J C and Cooper S P. 2004. A mechanical model for multiply-oriented conjugate deformation bands. Journal of Structural Geology, 26(2): 325-338.
Schultz R A and Siddharthan R. 2005. A general framework for the occurrence and faulting of deformation bands in porous granular rocks. Tectonophysics, 411: 1-18.
Walker R G and Middleton G V. 1977. Facies Models 9. Aeolian Sands. Geoscience Canada, 4(4): 182-192.
Watterson J. 1986. Fault dimensions, displacements and growth. Pure and Applied Geophysics, 124(1-2): 365- 373.
Weinberger R, Baer G, Shamir G and Agnon A. 1995. Defor-mation bands associated with dyke propagation in porous sandstone, Makhtesh Ramon, Israel. Physics and Chemistry of Dykes: 95-112.

相似文献/References:

[1]陈书平,韩 煦,黄新文.东濮凹陷古近系伸展褶皱及形成机理.大地构造与成矿学,2016.4(5):908.doi:10.16539/j.ddgzyckx.2016.05.001
 CHEN Shuping,HAN Xu and HUANG Xinwen.Paleogene Extensional Folds in Dongpu Sag and Their Folding Mechanism.Geotectonica et Metallogenia,2016.42(6):908.doi:10.16539/j.ddgzyckx.2016.05.001
[2]陈懋弘,乐兴文,李忠阳.桂西隆林孤立台地卡林型金矿的“梯式”结构模型及找矿前景.大地构造与成矿学,2018.42(5):832.doi:10.16539/j.ddgzyckx.2018.05.004
 CHEN Maohong,LE Xingwen,LI Zhongyang.A “Ladder” Model for Carlin-type Gold Deposits in Longlin Isolated Carbonate Rock Platform, Western Guangxi and its Prospecting Potential.Geotectonica et Metallogenia,2018.42(6):832.doi:10.16539/j.ddgzyckx.2018.05.004
[3]周 易,于福生,刘志娜.分层伸展叠加变形二维离散元模拟.大地构造与成矿学,2019.43(2):213.doi:10.16539/j.ddgzyckx.2019.02.002
 ZHOU Yi,YU Fusheng and LIU Zhina.Superimposed Extensional Deformation of Different Layers: Insights from Two Dimensional Discrete Element Modeling.Geotectonica et Metallogenia,2019.42(6):213.doi:10.16539/j.ddgzyckx.2019.02.002

备注/Memo

备注/Memo:
收稿日期: 2017-07-18; 改回日期: 2017-11-28
项目资助: 中国科学院先导研究项目(XDB18030104)和国家自然科学基金项目(41476035)联合资助。
第一作者简介: 王超(1994-), 男, 硕士研究生, 构造地质学专业。Email: wangchao715@mails.ucas.ac.cn
更新日期/Last Update: 2018-12-15