参考文献/References:
陈家富, 韩宝福, 张磊. 2010. 西准噶尔北部晚古生代两期侵入岩的地球化学、Sr-Nd同位素特征及其地质意义. 岩石学报, 26(8): 2317–2335.高睿, 肖龙, 王国灿, 贺新星, 杨刚, 鄢圣武. 2013. 西准噶尔晚古生代岩浆活动和构造背景. 岩石学报, 29(10): 3413–3434.韩宝福, 季建清, 宋彪, 陈立辉, 张磊. 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限. 岩石学报, 22(5), 1077–1086.梁细荣, 韦刚健, 李献华, 刘颖. 2003. 利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值. 地球化学, 32(1): 91–96.刘颖, 刘海臣, 李献华. 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学, 25(6): 552–558.邱华宁. 2006. 新一代Ar-Ar实验室建设与发展趋势: 以中国科学院广州地球化学研究所Ar-Ar实验室为例. 地球化学, 35: 133–140.宋彪, 李锦轶, 张进, 朱志新, 王煜, 徐新. 2011. 准噶尔托里地区塔尔根二长花岗岩锆石U-Pb年龄——托里断裂左行走滑运动开始的时间约束. 地质通报, 30(1): 19–25.苏玉平, 唐红峰, 侯广顺, 刘丛强. 2006. 新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究. 地球化学, 35(1): 55–67. 王福同. 2006.新疆维吾尔自治区古地理及地质生态图集. 北京: 中国地图出版社. 王金荣, 贾志磊, 李泰德, 马锦龙, 赵磊, 何彦彬, 张伟, 刘昆鑫, 王金荣. 2013. 新疆西准噶尔发现早泥盆世埃达克岩: 大地构造及成矿意义. 岩石学报, 29(3): 840–852.王强, 赵振华, 白正华, 熊小宁, 梅厚钧, 许继峰, 包志伟, 王一先. 2003. 新疆阿拉套山石炭纪埃达克岩, 富Nb岛弧玄武质岩: 板片熔体与地幔橄榄岩相互作用及地壳增生. 科学通报, 48(12): 1342–1349.王章棋, 江秀敏, 郭晶, 徐飞, 邓欣, 张倩, 李解, 牛启营, 罗照华. 2014. 新疆西准噶尔谢米斯台地区发现早古生代火山岩地层: 野外地质学和年代学证据. 大地构造与成矿学, 38(3): 670–685韦刚健, 梁细荣, 李献华, 刘颖. 2002. (LP) MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成. 地球化学, 31(3): 295–299.魏荣珠. 2010. 新疆西准噶尔拉巴花岗岩地球化学特征及年代学研究. 岩石矿物学杂志, 29(6): 663–674.易善鑫, 李永军, 焦光磊, 孙羽, 杨高学, 王军年, 杨丰柱. 2014. 西准噶尔博什库尔——成吉斯火山弧中早石炭世火山岩的地球化学特征及其构造意义. 矿物岩石地球化学通报, 33(4): 431–438.尹继元, 陈文, 喻顺, 龙晓平, 袁超, 张彦, 李洁, 孙敬博, 刘新宇. 2013b. 西准噶尔包古图富镁闪长质岩墙的时代, 地球化学特征以及铜金成矿意义. 中国地质, 40(4): 1030–1043.尹继元, 陈文, 袁超, 张运迎, 龙晓平, 喻顺, 张彦, 李洁, 孙敬博. 2013a. 新疆西准噶尔晚古生代侵入岩的年龄和构造意义——来自锆石LA-ICP-MS定年的证据. 地球化学, 42(5): 415–430.尹继元, 袁超, 孙敏, 龙晓平, 邱华宁, 王毓婧, 任江波, 关义立. 2012. 新疆哈图早二叠世富镁闪长岩的时代、地球化学特征和可能的成因机制. 岩石学报, 28(7): 2171–2184.尹继元, 袁超, 孙敏, 王毓婧, 龙晓平, 关义立. 2011. 新疆西准噶尔晚古生代的大地构造演化的岩浆活动记录. 大地构造与成矿学, 35(2): 275–288.朱永峰, 徐新, 魏少妮, 宋彪, 郭璇. 2007. 西准噶尔克拉玛依OIB型枕状玄武岩地球化学及其地质意义研究. 岩石学报, 23(7): 1739–1748.Cabanis B and Lecolle M. 1989. Le diagramme La/10-Y/15-Nb/8: Un outil pour la discrimination des series volcaniques et la mise en evidence des processes de mélange et/ou de contamination crustale. Comptes Rendus de l Academie dés Sciences Série II, 309, 2023–2029.Chen B and Arakawa Y. 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar fold-belt (NW China), with implications for Phanerozoic continental growth. Geochimica et Cosmochimica Acta, 69: 1307–1320.Chen B and Jahn B M. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar terrane, NW China: Nd-Sr isotope and trace element evidence. Journal of Asian Earth Sciences, 23: 691–703. Chen J F, Han B F, Ji J Q, Zhang L, Xu Z, He G Q and Wang T. 2010. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China. Lithos, 115: 137–152.Choulet F, Chen Y, Wang B, Faure M, Cluzel D, Charvet J, Lin W and Xu B. 2011. Late Paleozoic paleogeographic reconstruction of Western Central Asia based upon paleomagnetic data and its geodynamic implications. Journal of Asian Earth Sciences, 42: 867–884.Delong S E, Schwarz W M and Anderson R N. 1979. Thermal effects of ridge subduction. Earth and Planetary Science Letters, 44: 239–246.Dupuy C and Dostal J. 1984. Trace element geochemistry of some continental tholeiites. Earth and Planetary Science Letters, 67(1): 61–69.Geng H Y, Sun M, Yuan C, Xiao W J, Zhao G C, Zhang L F, Wong K and Wu F Y. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction? Chemical Geology, 266: 364–389.Geng H Y, Sun M, Yuan C, Zhao G C and Xiao W J. 2011. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 42: 854–866.Hastie A R, Kerr A C, Pearce J A and Mitchell S F. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48: 2341–2357.Hofmann A W, Jochum K P, Seufert M and White W M. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth and Planetary Science Letters, 79(1–2): 33–45.Jahn B M. 2004. The Central Asian orogenic Belt and growth of the continental crust in the Phanerozoic// Malpas J, Fleteher C J N, Ali J R, Aitehison J C. Aspects of the Tectonic Evolution of China. Gological Society, London, Special Publications, 226: 73–100.Liu X J, Xu J F, Castillo P R, Xiao W J, Shi Y, Feng Z H and Guo L. 2014. The Dupal isotopic anomaly in the southern Paleo-Asian Ocean: Nd-Pb isotope evidence from ophiolites in Northwest China. Lithos, 189: 185–200.Qiu H N and Jiang Y D. 2007. Sphalerite 40Ar/39Ar progressive crushing and stepwise heating techniques. Earth and Planetary Science Letters, 256: 224–232.Seng?r A M C, Natal’in B A and Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299– 307.Shen P, Pan H D, Xiao W J, Li X H, Dai H W and Zhu H P. 2013. Early Carboniferous intra-oceanic arc and back-arc basin system in the West Junggar, NW China. International Geology Review, doi: 10.1080/00206814. 2013.810385.Shen P, Shen Y C, Li X H, Pan H D, Zhu H P, Meng L and Dai H W. 2012. Northwestern Junggar Basin, Xiemisitai Mountains, China: A geochemical and geochronological approach. Lithos, 140–141: 103–118.Tang G J, Wang Q, Wyman D A, Li Z X, Xu Y G and Zhao Z H. 2012b. Recycling oceanic crust for continental crustal growth: Sr-Nd-Hf isotope evidence from granitoids in the western Junggar region, NW China. Lithos, 128: 73–83.Tang G J, Wang Q, Wyman D A, Li Z X, Zhao Z H and Yang Y H. 2012a. Late Carboniferous high εNd(t)-εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: Ridge-subduction-related magmatism and crustal growth. Lithos, 84: 86–102.Tang G J, Wang Q, Wyman D A, Li Z X, Zhao Z H, Jia X H and Jiang Z Q. 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chemical Geology, 277: 281–300.Tang G J, Wyman D A, Wang Q, Li J, Li Z X, Zhao Z H and Sun W D. 2012c. Asthenosphere-lithosphere interaction triggered by a slab window during ridge subduction: Trace element and Sr-Nd-Hf-Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area (NW China). Earth and Planetary Science Letters, 329: 84–96.Thorkelson D J. 1996. Subduction of diverging plates and the principles of slab window formation. Tectonophysics, 255: 47–63.Wang Q, Wyman D A, Zhao Z H, Xu J F, Bai Z H, Xiong X L, Bai T M, Li C F and Chu Z Y. 2007. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implications for Phanerozoic crustal growth in the Central Asia orogenic belt. Chemical Geology, 236: 42–64. Winchester J A and Floys P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325–343.Windley B F, Alexeiev D, Xiao W J, Kr?ner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164: 31–47. Wood D A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50: 11–30.Xiao W J, Han C M, Yuan C, Sun M, Lin S F, Chen H L, Li Z L, Li J L and Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of North Xinjiang, NW China: Implications for the tectonic evolution of Central Asia. Journal of Asian Earth Sciences, 32: 102–117.Xu Z, Han B F, Ren R, Zhou Y Z, Zhang L, Chen J F, Su L, Li X H and Liu D Y. 2012. Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China: Implications for Paleozoic intra-oceanic subduction-accretion process. Lithos, 132: 141–161.Yakubchuk A. 2004. Architecture and mineral deposit settings of the Altaid orogenic collage: A revised model. Journal of Asian Earth Science, 23: 761–779.Yang G X, Li Y J, Safonova I, Yi S X, Tong L L and Seltmann R. 2014b. Early Carboniferous volcanic rocks of West Junggar in the western Central Asian Orogenic Belt: Implications for a supra-subduction system. International Geology Review, DOI: 10.1080/00206814. 2014.902757Yang G X, Li Y J, Santosh M, Yang B K, Yang J, Zhang B and Tong L L. 2012. Geochronology and geochemistry of basaltic rocks from the Sartuohai ophiolitic mélange, NW China: Implications for a Devonian mantle plume within the Junggar Ocean. Journal of Asian Earth Sciences, 59: 141–155.Yang G X, Li Y J, Yan J, Tong L L, Han X and Wang Y B. 2014a. Geochronological and geochemical constraints on the origin of the 304±5 Ma Karamay A-type granites from West Junggar, Northwest China: Implications for understanding the Central Asian Orogenic Belt. International Geology Review, 56: 393–407.Yi Z Y, Huang B C, Xiao W J, Yang L K and Qiao Q Q. 2015. Paleomagnetic study of Late Paleozoic rocks in the Tacheng Basin of West Junggar (NW China): Implications for the tectonic evolution of the western Altaids. Gondwana Research, 27: 868-877.Yin J Y, Chen W, Xiao W J, Yuan C, Sun M, Tang G J, Yu S, Long X P, Cai K D, Geng H Y, Zhang Y and Liu X Y. 2015b. Petrogenesis of Early-Permian Sanukitoids from West Junggar, Northwest China: Implications for Late Paleozoic crustal growth in Central Asia. Tectonophysics, doi: 10.1016/j.tecto.2015.01.005.Yin J Y, Chen W, Yuan C, Yu S, Xiao W J, Long X P, Li J and Sun J B. 2015a. Petrogenesis of Early Carboniferous adakitic dikes, Sawur region, northern West Junggar, NW China: Implications for geodynamic evolution. Gondwana Research, 27(4): 1630–1645.Yin J Y, Long X P, Yuan C, Sun M, Zhao G C and Geng H Y. 2013. A Late Carboniferous slab window: Geochronological and geochemical evidence from mafic to intermediate dykes in West Junggar, NW China. Lithos, 175–176: 146–162.Yin J Y, Yuan C, Sun M, Long X P, Zhao G C and Geng H Y. 2010. Late Carboniferous High-Mg dioritic dykes in Western Junggar, NW China: Geochemical features, petrogenesis and tectonic implications. Gondwana Research, 17: 145–152.Yin J Y, Chen W, Xiao W J, Yuan C, Windley B F, Yu S, Cai K D. 2015c. Late Silurian-early Devonian adakitic granodiorite, A-type and I-type granites in NW Junggar, NW China: Partial melting of mafic lower crust and implications for slab roll-back. Gondwana Research, doi: 10.1016/j.gr.2015.06.016.Zhang J E, Xiao W J, Han C M, Mao Q G, Ao S J, Guo Q Q and Ma C. 2011. A Devonian to Carboniferous intra-oceanic subduction system in Western Junggar, NW China. Lithos, 125: 592–606.Zhang X and Zhang H. 2014. Geochronological, geochemical, and Sr-Nd-Hf isotopic studies of the Baiyanghe A-type granite porphyry in the Western Junggar: Implications for its petrogenesis and tectonic setting. Gondwana Research, 25: 1554–1569.Zhou T F, Yuan F, Fan Y, Zhang D Y, Cooke D and Zhao G C. 2008. Granites in the Sawuer region of the west Junggar, Xinjiang Province, China: Geochronological and geochemical characteristics and their geodynamic significance. Lithos, 106: 191–206.